For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to...For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.展开更多
The purpose of this paper is to derive some pointwise second-order necessary conditions for stochastic optimal controls in the general case that the control variable enters into both the drift and the diffusion terms....The purpose of this paper is to derive some pointwise second-order necessary conditions for stochastic optimal controls in the general case that the control variable enters into both the drift and the diffusion terms.When the control region is convex, a pointwise second-order necessary condition for stochastic singular optimal controls in the classical sense is established; while when the control region is allowed to be nonconvex, we obtain a pointwise second-order necessary condition for stochastic singular optimal controls in the sense of Pontryagin-type maximum principle. It is found that, quite different from the first-order necessary conditions,the correction part of the solution to the second-order adjoint equation appears in the pointwise second-order necessary conditions whenever the diffusion term depends on the control variable, even if the control region is convex.展开更多
基金Projects(51374248,51320105006) supported by National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692) supported by the China Postdoctoral Science Foundation
文摘For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2011CB808002)National Natural Science Foundation of China(Grant Nos.11221101+4 种基金1123100711401404 and 11471231)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1273)the Changjiang Scholars Program from the Chinese Education Ministrythe Spanish Science and Innovation Ministry(Grant No.MTM2011-29306)
文摘The purpose of this paper is to derive some pointwise second-order necessary conditions for stochastic optimal controls in the general case that the control variable enters into both the drift and the diffusion terms.When the control region is convex, a pointwise second-order necessary condition for stochastic singular optimal controls in the classical sense is established; while when the control region is allowed to be nonconvex, we obtain a pointwise second-order necessary condition for stochastic singular optimal controls in the sense of Pontryagin-type maximum principle. It is found that, quite different from the first-order necessary conditions,the correction part of the solution to the second-order adjoint equation appears in the pointwise second-order necessary conditions whenever the diffusion term depends on the control variable, even if the control region is convex.