城市污水处理过程中,降低能耗具有重要意义。基于污水处理1号基准模型(Benchmark Simulation Model No.1,BSM1),设计5组线性自抗扰控制方案,获得了针对污水处理过程的线性自抗扰控制的有效参数整定方法;同时,根据活性污泥法工艺,确定影...城市污水处理过程中,降低能耗具有重要意义。基于污水处理1号基准模型(Benchmark Simulation Model No.1,BSM1),设计5组线性自抗扰控制方案,获得了针对污水处理过程的线性自抗扰控制的有效参数整定方法;同时,根据活性污泥法工艺,确定影响污水处理水质和能耗的主要因素,并分析了各种控制方案下的出水水质和能耗,获得了污水处理的优化控制方案。仿真结果表明,在保证出水水质指标的前提下,利用线性自抗扰控制方法合理控制污水处理工艺中的硝化和反硝化反应可有效降低污水处理的能耗,为工程应用提供了思路。展开更多
In order to describe the travel time of signalcontrolled roads, a travel time model for urban basic roads based on the cumulative curve is proposed. First, the traffic wave method is used to analyze the formation and ...In order to describe the travel time of signalcontrolled roads, a travel time model for urban basic roads based on the cumulative curve is proposed. First, the traffic wave method is used to analyze the formation and dispersion of the vehicle queue. Cumulative curves for road entrances and exits are established. Based on the cumulative curves, the travel time of the one-lane road under stable flow input is derived. And then, the multi-lane road is decomposed into a series of single-lane links based on its topological characteristics. Hence, the travel time function for the basic road is obtained. The travel time is a function of road length, flow and control parameters. Numerical analyses show that the travel time depends on the supply-demand condition, and it has high sensitivity during peak hours.展开更多
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop...In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.展开更多
In order to minimize the delays and stops caused by the early started coordinated green phase of the vehicle- actuated signal systems, a stochastic offsets calculation method based on the new types of advanced traffic...In order to minimize the delays and stops caused by the early started coordinated green phase of the vehicle- actuated signal systems, a stochastic offsets calculation method based on the new types of advanced traffic management system (ATMS) data is proposed. As the mainline green starts randomly in vehicle-actuated signal systems, the random theory is applied to obtain the distribution of the unused green time at side streets based on the green gap-out mechanism. Then, the green start time of the mainline can be selected at the point with maximum probability to minimize the delays or stops caused by the randomly started mainline green. A case study in Maine, USA, whose traffic conditions are similar to those of the middle-size Chinese cities, proves that the proposed method can significantly reduce the travel time and delays.展开更多
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character...In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.展开更多
文摘城市污水处理过程中,降低能耗具有重要意义。基于污水处理1号基准模型(Benchmark Simulation Model No.1,BSM1),设计5组线性自抗扰控制方案,获得了针对污水处理过程的线性自抗扰控制的有效参数整定方法;同时,根据活性污泥法工艺,确定影响污水处理水质和能耗的主要因素,并分析了各种控制方案下的出水水质和能耗,获得了污水处理的优化控制方案。仿真结果表明,在保证出水水质指标的前提下,利用线性自抗扰控制方法合理控制污水处理工艺中的硝化和反硝化反应可有效降低污水处理的能耗,为工程应用提供了思路。
基金The National Basic Research Program of China (973 Program) ( No. 2006CB705505)the Basic Scientific Research Fund of Jilin University ( No. 200903209)
文摘In order to describe the travel time of signalcontrolled roads, a travel time model for urban basic roads based on the cumulative curve is proposed. First, the traffic wave method is used to analyze the formation and dispersion of the vehicle queue. Cumulative curves for road entrances and exits are established. Based on the cumulative curves, the travel time of the one-lane road under stable flow input is derived. And then, the multi-lane road is decomposed into a series of single-lane links based on its topological characteristics. Hence, the travel time function for the basic road is obtained. The travel time is a function of road length, flow and control parameters. Numerical analyses show that the travel time depends on the supply-demand condition, and it has high sensitivity during peak hours.
基金The National Natural Science Foundation of China(No.51208054)
文摘In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.
基金The National Natural Science Foundation of China(No. 50422283 )China Postdoctoral Science Foundation (No.20110491333)
文摘In order to minimize the delays and stops caused by the early started coordinated green phase of the vehicle- actuated signal systems, a stochastic offsets calculation method based on the new types of advanced traffic management system (ATMS) data is proposed. As the mainline green starts randomly in vehicle-actuated signal systems, the random theory is applied to obtain the distribution of the unused green time at side streets based on the green gap-out mechanism. Then, the green start time of the mainline can be selected at the point with maximum probability to minimize the delays or stops caused by the randomly started mainline green. A case study in Maine, USA, whose traffic conditions are similar to those of the middle-size Chinese cities, proves that the proposed method can significantly reduce the travel time and delays.
基金The National Natural Science Foundation of China(No.60972001)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ_0163)the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1212)
文摘In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.