An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for th...A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.展开更多
The photon transport properties in one-dimensional coupled-resonator waveguide embedded with a quantum dot molecule are investigated. The calculations reveal that one can control the photon transport by using a gate e...The photon transport properties in one-dimensional coupled-resonator waveguide embedded with a quantum dot molecule are investigated. The calculations reveal that one can control the photon transport by using a gate electric field. The phase shift and group velocity delay of the transmitted single photon are discussed. This research may be found applications in integrated optoelectronic devices and solid quantum devices.展开更多
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
基金Project(61074018)supported by the National Natural Science Foundation of ChinaProject(2012kfjj06)supported by Hunan Province Key Laboratory of Smart Grids Operation and Control(Changsha University of Science and Technology),China
文摘A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11004001 and 11105001the Key Project of Chinese Ministry of Education under Grant No. 212076the Anhui Provincial Natural Science Foundation under Grant No. 1208085QA09
文摘The photon transport properties in one-dimensional coupled-resonator waveguide embedded with a quantum dot molecule are investigated. The calculations reveal that one can control the photon transport by using a gate electric field. The phase shift and group velocity delay of the transmitted single photon are discussed. This research may be found applications in integrated optoelectronic devices and solid quantum devices.