The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of dis...The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.展开更多
The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means o...The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.展开更多
One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings...One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings in coal mines. These gels were developed to meet strict selection criteria including easy preparation, no or low toxicity, controllable gelation time, adaptable to mine water chemistry, adjustable viscosity, relatively long gel life, thermally and chemically stable and low cost. The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in under- ground coal mines. These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.展开更多
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac...Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world expe...Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.展开更多
Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based so...Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.展开更多
基金Fund for New Teacher of the Doctoral Program of Higher Education(No. 200805611092)the Fundamental Research Funds for the Central Universities(No.2009zm0064)the Key Program of the National Natural Science Foundation of China(No.50934002) for its financial support
文摘The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.
文摘The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.
文摘One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings in coal mines. These gels were developed to meet strict selection criteria including easy preparation, no or low toxicity, controllable gelation time, adaptable to mine water chemistry, adjustable viscosity, relatively long gel life, thermally and chemically stable and low cost. The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in under- ground coal mines. These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.
基金financially supported by Projects of the National Key Technology R&D Program of China(Nos.2013BAB02B01 and2013BAB02B03)the National Natural Science Foundation of China(Nos.51274055 and 51204030)+1 种基金the Fundamental Research Funds for the Central University of China(Nos.N130401006,N120801002 and N120701001)the Key Science&Technology Special Project of Third Five-Year Plan of MCC(No.0012012009)
文摘Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.
文摘Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.
基金supported by the Australian Research Council (ARC) through Discovery Project programs
文摘Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.