A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) o...A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.展开更多
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c...Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.展开更多
Closed-loop production management combines the process of history matching and production optimization together to peri-odically updates the reservoir model and determine the optimal control strategy for production de...Closed-loop production management combines the process of history matching and production optimization together to peri-odically updates the reservoir model and determine the optimal control strategy for production development to realize the goal of decreasing the knowledge of model uncertainty as well as maximize the economic benefits for the expected reservoir life. The adjoint-gradient-based methods seem to be the most efficient algorithms for closed-loop management. Due to complicated calculation and limited availability of adjoint-gradient in commercial reservoir simulators, the application of this method is still prohibited for real fields. In this paper, a simultaneous perturbation stochastic approximation (SPSA) algorithm is proposed for reservoir closed-loop production management with the combination of a parameterization way for history matching and a co-variance matrix to smooth well controls for production optimization. By using a set of unconditional realizations, the proposed parameterization method can transform the minimization of the objective function in history matching from a higher dimension to a lower dimension, which is quite useful for large scale history matching problem. Then the SPSA algorithm minimizes the objective function iteratively to get an optimal estimate reservoir model. Based on a prior covariance matrix for production op-timization, the SPSA algorithm generates a smooth stochastic search direction which is always uphill and has a certain time correlation for well controls. The example application shows that the SPSA algorithm for closed-loop production management can decrease the geological uncertainty and provide a reasonable estimate reservoir model without the calculation of the ad-joint-gradient. Meanwhile, the well controls optimized by the alternative SPSA algorithm are fairly smooth and significantly improve the effect of waterflooding with a higher NPV and a better sweep efficiency than the reactive control strategy.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
This paper considers the formatiomshape control of three agents in the plane. By adding an adaptive perturbation to any agent's movement direction, a novel control strategy is proposed. It is shown that the proposed ...This paper considers the formatiomshape control of three agents in the plane. By adding an adaptive perturbation to any agent's movement direction, a novel control strategy is proposed. It is shown that the proposed novel control law can not only guarantee the global asymptotical stability of the desired formation shape, but also ensure the collision avoidance of agents between each other. Simulation results are provided to illustrate the effectiveness of the control algorithm.展开更多
To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis,...To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis, two categories of control strategies are used to dynamically correct and compensate the transient state steering responses and vehicle behaviors. Simulator tests including subjective evaluations and virtual field tests are both conducted to make comprehensive investigations on the series of control logics. The subjective evaluations demonstrate that the SBW vehicle with a specifically selected value of steering sensitivity tends to be more desirable for driving than a conventional one in which a fixed steering ratio exists. The virtual field tests indicate that the control strategies for dynamical correction and compensation could effectively improve the handling per-formances of an SBW vehicle by reducing the work load of drivers, enhancing the track-holding performance, and improving steering response properties.展开更多
This paper provides an OpenMP-based parallel Very Dishonest Newton(VDHN) algorithm with variable step size,running transient stability simulations(TSA) on multi-core computers.Under the framework of simultaneous solut...This paper provides an OpenMP-based parallel Very Dishonest Newton(VDHN) algorithm with variable step size,running transient stability simulations(TSA) on multi-core computers.Under the framework of simultaneous solution method of TSA,the step-size control strategy is used according to the local truncation error theory firstly.Then,computation of the generation units,which is the most time-consuming part of the simulation,is dynamically dispatched to several cores using an α dynamic scheduling scheme to obtain workload balancing based on OpenMP.Due to the convergence of Newton-type iterations,an adaptive Jacobian update control strategy is applied to reduce the sequential part of the simulation and the overhead generated by OpenMP.Several large scale test cases verify the validity and practicability of the proposed parallel algorithm,showing that the proposed approach achieves high speed-up and a considerable reduction in parallel overheads.展开更多
To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-deg...To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.展开更多
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+2 种基金the Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.
基金Project(51221004) supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2010R50036) supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.
基金supported by the National Natural Science Foundation of China (Grant No. 61004095F030202)the China Important National Sci-ence & Technology Specific Projects (Grant No. 2008ZX05030-05-002)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 09CX05007A)the National Basic Research Program of China (Grant No. 2011CB201000)
文摘Closed-loop production management combines the process of history matching and production optimization together to peri-odically updates the reservoir model and determine the optimal control strategy for production development to realize the goal of decreasing the knowledge of model uncertainty as well as maximize the economic benefits for the expected reservoir life. The adjoint-gradient-based methods seem to be the most efficient algorithms for closed-loop management. Due to complicated calculation and limited availability of adjoint-gradient in commercial reservoir simulators, the application of this method is still prohibited for real fields. In this paper, a simultaneous perturbation stochastic approximation (SPSA) algorithm is proposed for reservoir closed-loop production management with the combination of a parameterization way for history matching and a co-variance matrix to smooth well controls for production optimization. By using a set of unconditional realizations, the proposed parameterization method can transform the minimization of the objective function in history matching from a higher dimension to a lower dimension, which is quite useful for large scale history matching problem. Then the SPSA algorithm minimizes the objective function iteratively to get an optimal estimate reservoir model. Based on a prior covariance matrix for production op-timization, the SPSA algorithm generates a smooth stochastic search direction which is always uphill and has a certain time correlation for well controls. The example application shows that the SPSA algorithm for closed-loop production management can decrease the geological uncertainty and provide a reasonable estimate reservoir model without the calculation of the ad-joint-gradient. Meanwhile, the well controls optimized by the alternative SPSA algorithm are fairly smooth and significantly improve the effect of waterflooding with a higher NPV and a better sweep efficiency than the reactive control strategy.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
基金supported by National Nature Science Foundation under Grant Nos.60974041,60934006Research Fund for the Doctoral Program of Higher Education of China under Grant No.20090092110021
文摘This paper considers the formatiomshape control of three agents in the plane. By adding an adaptive perturbation to any agent's movement direction, a novel control strategy is proposed. It is shown that the proposed novel control law can not only guarantee the global asymptotical stability of the desired formation shape, but also ensure the collision avoidance of agents between each other. Simulation results are provided to illustrate the effectiveness of the control algorithm.
基金Project (Nos. 50475009 and 50775096) supported by the National Natural Science Foundation of China
文摘To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis, two categories of control strategies are used to dynamically correct and compensate the transient state steering responses and vehicle behaviors. Simulator tests including subjective evaluations and virtual field tests are both conducted to make comprehensive investigations on the series of control logics. The subjective evaluations demonstrate that the SBW vehicle with a specifically selected value of steering sensitivity tends to be more desirable for driving than a conventional one in which a fixed steering ratio exists. The virtual field tests indicate that the control strategies for dynamical correction and compensation could effectively improve the handling per-formances of an SBW vehicle by reducing the work load of drivers, enhancing the track-holding performance, and improving steering response properties.
基金supported by the National Natural Science Foundation of China (Grant No. 2012CB215106)the National Basic Research Program of China ("973" Program) (Grant No. 50977082)
文摘This paper provides an OpenMP-based parallel Very Dishonest Newton(VDHN) algorithm with variable step size,running transient stability simulations(TSA) on multi-core computers.Under the framework of simultaneous solution method of TSA,the step-size control strategy is used according to the local truncation error theory firstly.Then,computation of the generation units,which is the most time-consuming part of the simulation,is dynamically dispatched to several cores using an α dynamic scheduling scheme to obtain workload balancing based on OpenMP.Due to the convergence of Newton-type iterations,an adaptive Jacobian update control strategy is applied to reduce the sequential part of the simulation and the overhead generated by OpenMP.Several large scale test cases verify the validity and practicability of the proposed parallel algorithm,showing that the proposed approach achieves high speed-up and a considerable reduction in parallel overheads.
基金supported by the Program for Changjiang ScholarsInnovative Research Team in University,China(No.IRT0626)
文摘To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.