In this study, the entire mitochondrial DNA(mtDNA) control region(CR) of Pholis fangi was amplified via polymerase chain reaction followed by direct sequencing. The length of the mtDNA CR consensus sequence of P. fang...In this study, the entire mitochondrial DNA(mtDNA) control region(CR) of Pholis fangi was amplified via polymerase chain reaction followed by direct sequencing. The length of the mtDNA CR consensus sequence of P. fangi was 853 bp in length. In accordance with the recognition sites as were previously reported in fish species, the mtDNA CR sequence of P. fangi can be divided into 3 domains, i.e., the extended terminal associated sequence(ETAS), the central conserved sequence block(CSB), and the CSB domain. In addition, the following structures were identified in the mtDNA CR sequence of P. fangi: 2 ETASs in the ETAS domain(TAS and cTAS), 6 CSBs in the central CSB domain(CSB-F to CSB-A), and 3 CSBs in the CSB domain(CSB-1 to CSB-3). These demonstrated that the structure of the mtDNA CR of P. fangi was substantially different from those of most other fish species. The mtDNA CR sequence of P. fangi contained one conserved region from 656 bp to 815 bp. Similar to most other fish species, P. fangi has no tandem repeat sequences in its mtDNA CR sequence. Phylogenetic analysis based on the complete mtDNA CR sequences showed that there were no genetic differences within P. fangi populations of the same geographical origin and between P. fangi populations of different geographical origins.展开更多
The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface genera...The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method(OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.展开更多
基金supported by the Public Science and Technology Research Funds Projects of Ocean (Nos. 201305043 and 201405010)
文摘In this study, the entire mitochondrial DNA(mtDNA) control region(CR) of Pholis fangi was amplified via polymerase chain reaction followed by direct sequencing. The length of the mtDNA CR consensus sequence of P. fangi was 853 bp in length. In accordance with the recognition sites as were previously reported in fish species, the mtDNA CR sequence of P. fangi can be divided into 3 domains, i.e., the extended terminal associated sequence(ETAS), the central conserved sequence block(CSB), and the CSB domain. In addition, the following structures were identified in the mtDNA CR sequence of P. fangi: 2 ETASs in the ETAS domain(TAS and cTAS), 6 CSBs in the central CSB domain(CSB-F to CSB-A), and 3 CSBs in the CSB domain(CSB-1 to CSB-3). These demonstrated that the structure of the mtDNA CR of P. fangi was substantially different from those of most other fish species. The mtDNA CR sequence of P. fangi contained one conserved region from 656 bp to 815 bp. Similar to most other fish species, P. fangi has no tandem repeat sequences in its mtDNA CR sequence. Phylogenetic analysis based on the complete mtDNA CR sequences showed that there were no genetic differences within P. fangi populations of the same geographical origin and between P. fangi populations of different geographical origins.
文摘The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method(OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.