A novel algorithm for active noise control systems based on frequency selective filters (FSFANC) is presented in the paper. The FSFANC aims at the multi-tonal noise attenuation problem. One FSFANC system copes with ...A novel algorithm for active noise control systems based on frequency selective filters (FSFANC) is presented in the paper. The FSFANC aims at the multi-tonal noise attenuation problem. One FSFANC system copes with one of the tonal components, and several FSFANC systems can run independently in paralld to cancel the selected multiple tones. The proposed algorithm adopts a simple structure with only two coefficients that can be explained as the real and imaginary parts of the structure to model the secondary path, and estimates the secondary path by injecting sinusoidal identification signals. Theoretical analysis and laboratory experiments show that the proposed algorithm possesses stone advantages, such as simpler structure, less computational burden, greater stability, and fast converging speed.展开更多
基金supported by the Independent Innovation Foundation of Shandong University(No.2009JC004)the Natural Science Foundation of Shandong Province(No.Y2007G31)
文摘A novel algorithm for active noise control systems based on frequency selective filters (FSFANC) is presented in the paper. The FSFANC aims at the multi-tonal noise attenuation problem. One FSFANC system copes with one of the tonal components, and several FSFANC systems can run independently in paralld to cancel the selected multiple tones. The proposed algorithm adopts a simple structure with only two coefficients that can be explained as the real and imaginary parts of the structure to model the secondary path, and estimates the secondary path by injecting sinusoidal identification signals. Theoretical analysis and laboratory experiments show that the proposed algorithm possesses stone advantages, such as simpler structure, less computational burden, greater stability, and fast converging speed.