为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程...为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。展开更多
针对如何提高阀控离合器的位置控制精度、克服非线性等问题,该文提出了一种基于状态反馈线性化的电液伺服系统模型预测控制方案。首先建立了伺服系统状态空间模型,将非线性系统映射为新坐标空间内的线性系统模型;接着设计了一种基于马...针对如何提高阀控离合器的位置控制精度、克服非线性等问题,该文提出了一种基于状态反馈线性化的电液伺服系统模型预测控制方案。首先建立了伺服系统状态空间模型,将非线性系统映射为新坐标空间内的线性系统模型;接着设计了一种基于马尔可夫链预测模型的反馈线性化模型预测控制器(feedback linearization model predictive controller,FLMPC),通过设计损失函数求解最优输入序列,最终作用于反馈线性化系统。仿真结果证明,在相同输入情况下,反馈线性化系统与原系统的位置误差满足控制需要,可以有效减少超调量。且在保证被控对象快速稳定控制的条件下,相比非线性模型预测控制,该算法单步计算时间更短。展开更多
模型可以生成符合用户偏好的摘要.之前的摘要模型侧重于单独控制某个属性,而不是多个属性的组合.传统的Seq2Seq多属性可控文本摘要模型在满足多个控制属性时,存在无法整合所有控制属性、无法准确再现文本中关键信息和无法处理单词表外...模型可以生成符合用户偏好的摘要.之前的摘要模型侧重于单独控制某个属性,而不是多个属性的组合.传统的Seq2Seq多属性可控文本摘要模型在满足多个控制属性时,存在无法整合所有控制属性、无法准确再现文本中关键信息和无法处理单词表外单词等问题.为此,本文提出了一种基于扩展Transformer和指针生成网络(pointer generator network,PGN)的模型.模型中的扩展Transformer将Transformer单编码器-单解码器的模型形式扩展成具有双重文本语义信息提取的双编码器和单个可融合指导信号特征的解码器形式.然后利用指针生成网络模型选择从源文本中复制单词或利用词汇表生成新的摘要信息,以解决摘要任务中常出现的OOV(out of vocabulary)问题.此外,为高效完成位置信息编码,模型在注意力层中使用相对位置表示来引入文本的序列信息.模型可以用于控制摘要的许多重要属性,包括长度、主题和具体性等.通过在公开数据集MACSum上的实验表明,相较以往方法,本文提出的模型在确保摘要质量的同时,更加符合用户给定的属性要求.展开更多
文摘为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。
文摘针对如何提高阀控离合器的位置控制精度、克服非线性等问题,该文提出了一种基于状态反馈线性化的电液伺服系统模型预测控制方案。首先建立了伺服系统状态空间模型,将非线性系统映射为新坐标空间内的线性系统模型;接着设计了一种基于马尔可夫链预测模型的反馈线性化模型预测控制器(feedback linearization model predictive controller,FLMPC),通过设计损失函数求解最优输入序列,最终作用于反馈线性化系统。仿真结果证明,在相同输入情况下,反馈线性化系统与原系统的位置误差满足控制需要,可以有效减少超调量。且在保证被控对象快速稳定控制的条件下,相比非线性模型预测控制,该算法单步计算时间更短。
文摘模型可以生成符合用户偏好的摘要.之前的摘要模型侧重于单独控制某个属性,而不是多个属性的组合.传统的Seq2Seq多属性可控文本摘要模型在满足多个控制属性时,存在无法整合所有控制属性、无法准确再现文本中关键信息和无法处理单词表外单词等问题.为此,本文提出了一种基于扩展Transformer和指针生成网络(pointer generator network,PGN)的模型.模型中的扩展Transformer将Transformer单编码器-单解码器的模型形式扩展成具有双重文本语义信息提取的双编码器和单个可融合指导信号特征的解码器形式.然后利用指针生成网络模型选择从源文本中复制单词或利用词汇表生成新的摘要信息,以解决摘要任务中常出现的OOV(out of vocabulary)问题.此外,为高效完成位置信息编码,模型在注意力层中使用相对位置表示来引入文本的序列信息.模型可以用于控制摘要的许多重要属性,包括长度、主题和具体性等.通过在公开数据集MACSum上的实验表明,相较以往方法,本文提出的模型在确保摘要质量的同时,更加符合用户给定的属性要求.