This paper deals with a scalar conservation law in 1-D space dimension, and in particular, the focus is on the stability analysis for such an equation. The problem of feedback stabilization under proportional-integral...This paper deals with a scalar conservation law in 1-D space dimension, and in particular, the focus is on the stability analysis for such an equation. The problem of feedback stabilization under proportional-integral-derivative(PID for short) boundary control is addressed. In the proportional-integral(PI for short) controller case, by spectral analysis, the authors provide a complete characterization of the set of stabilizing feedback parameters, and determine the corresponding time delay stability interval. Moreover, the stability of the equilibrium is discussed by Lyapunov function techniques, and by this approach the exponential stability when a damping term is added to the classical PI controller scheme is proved. Also, based on Pontryagin results on stability for quasipolynomials, it is shown that the closed-loop system sub ject to PID control is always unstable.展开更多
This paper proves the local exact one-sided boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws with characteristics with constant multiplicity. This generalizes th...This paper proves the local exact one-sided boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws with characteristics with constant multiplicity. This generalizes the results in [Li, T. and Yu, L., One-sided exact boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws, To appear in Journal de Mathematiques Pures et Appliquees, 2016.] for a class of strictly hyperbolic systems of conservation laws.展开更多
基金supported by the ERC Advanced Grant 266907(CPDENL)of the 7th Research Framework Programme(FP7)FIRST,Initial Training Network of the European Commission(No.238702)PITNGA-2009-238702
文摘This paper deals with a scalar conservation law in 1-D space dimension, and in particular, the focus is on the stability analysis for such an equation. The problem of feedback stabilization under proportional-integral-derivative(PID for short) boundary control is addressed. In the proportional-integral(PI for short) controller case, by spectral analysis, the authors provide a complete characterization of the set of stabilizing feedback parameters, and determine the corresponding time delay stability interval. Moreover, the stability of the equilibrium is discussed by Lyapunov function techniques, and by this approach the exponential stability when a damping term is added to the classical PI controller scheme is proved. Also, based on Pontryagin results on stability for quasipolynomials, it is shown that the closed-loop system sub ject to PID control is always unstable.
基金supported by the National Natural Science Foundation of China(No.11501122)
文摘This paper proves the local exact one-sided boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws with characteristics with constant multiplicity. This generalizes the results in [Li, T. and Yu, L., One-sided exact boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws, To appear in Journal de Mathematiques Pures et Appliquees, 2016.] for a class of strictly hyperbolic systems of conservation laws.