In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on ...In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution i...According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.展开更多
This paper deals with a cooperative control problem of a team of double-integrator agents moving along a set of given curves with a nominated formation. A projection-tracking design method is proposed for designing th...This paper deals with a cooperative control problem of a team of double-integrator agents moving along a set of given curves with a nominated formation. A projection-tracking design method is proposed for designing the path-following control and the formation protocol, which guarantee forma- tion motion of the multi-agent system under a directed communication graph. Necessary and sufficient conditions of the control gains for solving the coordinated problem are obtained when the directed communication graph has a globally reachable node. Simulation results of formation motion among three agents demonstrate the effectiveness of the proposed approach.展开更多
基金supported by the Project kzcx2-yw-113,kzcx2-yw-121 and kzcx1-yw-15-4,CAS
文摘In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272346)the National Basic Research Program of China("973"Project)(Grant No.2013CB733100)
文摘According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.
基金supported by National Natural Science Foundation of China under Grant Nos.60974041 and 60934006
文摘This paper deals with a cooperative control problem of a team of double-integrator agents moving along a set of given curves with a nominated formation. A projection-tracking design method is proposed for designing the path-following control and the formation protocol, which guarantee forma- tion motion of the multi-agent system under a directed communication graph. Necessary and sufficient conditions of the control gains for solving the coordinated problem are obtained when the directed communication graph has a globally reachable node. Simulation results of formation motion among three agents demonstrate the effectiveness of the proposed approach.