Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of sh...Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast.展开更多
The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the stru...The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.展开更多
With science and technology development,vibration testing as the most important item in reliability test is becoming more and more important,at the same time,vibrate condition becoming more and more complicated,the ph...With science and technology development,vibration testing as the most important item in reliability test is becoming more and more important,at the same time,vibrate condition becoming more and more complicated,the phenomenon increases that the output of controller goes beyond controlling range so that destroy the specimen. In this paper,some skills such as how to set the parameters of force controller,where to place the sensor,which material to be chosen and which skills to be used while making jigs were introduced to avoid the just matter. At last,some examples were given to prove the validity of the method proposed.展开更多
Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an effi...Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline--namely the Connectome Compu- tation System (CCS)-for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping andconnectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI- Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6-85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/ zuoxinian/CCS) and our laboratory's Web site (http://lfcd. psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.展开更多
基金Foundation item: Project(51064009) supported by the National Natural Science Foundation of ChinaProject(201104356) supported by the China Postdoctoral Science FoundationProject(20114BAB206030) supported by the Natural Science Foundation of Jiangxi Province,China
文摘Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast.
文摘The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.
文摘With science and technology development,vibration testing as the most important item in reliability test is becoming more and more important,at the same time,vibrate condition becoming more and more complicated,the phenomenon increases that the output of controller goes beyond controlling range so that destroy the specimen. In this paper,some skills such as how to set the parameters of force controller,where to place the sensor,which material to be chosen and which skills to be used while making jigs were introduced to avoid the just matter. At last,some examples were given to prove the validity of the method proposed.
基金partially supported by the National Basic Research Program (973) of China (2015CB351702)the National Natural Science Foundation of China (81220108014, 81471740, 81201153, 81171409, and 81270023)+4 种基金the Key Research Program (KSZD-EW-TZ-002)the Hundred Talents Program of the Chinese Academy of SciencesDr. Xiu-Xia Xing acknowledges the Beijing Higher Education Young Elite Teacher Project (No. YETP1593)Dr. Zhi Yang acknowledges the Foundation of Beijing Key Laboratory of Mental Disorders (2014JSJB03)the Outstanding Young Researcher Award from Institute of Psychology, Chinese Academy of Sciences (Y4CX062008)
文摘Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline--namely the Connectome Compu- tation System (CCS)-for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping andconnectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI- Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6-85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/ zuoxinian/CCS) and our laboratory's Web site (http://lfcd. psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.