Obesity, as a chronic condition, has been a serious public health issue over the last decades both in the affluent Western world and developing countries. As reported, the risk of several serious diseases increases wi...Obesity, as a chronic condition, has been a serious public health issue over the last decades both in the affluent Western world and developing countries. As reported, the risk of several serious diseases increases with weight gain, including type 2 diabetes,coronary heart disease, cancer, and respiratory diseases. In addition to lifestyle modifications, pharmacotherapy has become an important strategy to control weight gain. However, most of the anti-obesity drugs often show poor outcome for weight-loss and cause severe adverse effects. This review surveys recent advances in nanomedicine as an emerging strategy for obesity treatment with an emphasis on the enhanced therapeutic efficiency and minimized side effects. The insights for future development are also discussed.展开更多
For the therapies of diabetes mellitus, a uovel mathematical model with two state impulses: impulsive injection of insulin and impulsive injection of glucagon, is proposed. To avoid hypoglycemia and hyperglycemia, th...For the therapies of diabetes mellitus, a uovel mathematical model with two state impulses: impulsive injection of insulin and impulsive injection of glucagon, is proposed. To avoid hypoglycemia and hyperglycemia, the injections of insulin and glucagon are determined by closely monitoring the plasma glucose level of the patients. By using differential equation geometry theory, the existence of periodic solution and the attrac- tion region of the system have been obtained, which ensures that injections in such an automated way can keep the blood glucose concentration under control. The simula- tion results verify that the better insulin injection strategy in closed-loop control is a larger dose but longer interval rather than a smaller dose but shorter interval. Besides, our numerical analysis reveals that medicine studies and practice that slow down the insulin degradation are helpful for the plasma glucose control. Our findings can provide significant guidance in both design of artificial pancreas and clinical treatment.展开更多
基金supported by the grant from Sloan Research Fellowship
文摘Obesity, as a chronic condition, has been a serious public health issue over the last decades both in the affluent Western world and developing countries. As reported, the risk of several serious diseases increases with weight gain, including type 2 diabetes,coronary heart disease, cancer, and respiratory diseases. In addition to lifestyle modifications, pharmacotherapy has become an important strategy to control weight gain. However, most of the anti-obesity drugs often show poor outcome for weight-loss and cause severe adverse effects. This review surveys recent advances in nanomedicine as an emerging strategy for obesity treatment with an emphasis on the enhanced therapeutic efficiency and minimized side effects. The insights for future development are also discussed.
文摘For the therapies of diabetes mellitus, a uovel mathematical model with two state impulses: impulsive injection of insulin and impulsive injection of glucagon, is proposed. To avoid hypoglycemia and hyperglycemia, the injections of insulin and glucagon are determined by closely monitoring the plasma glucose level of the patients. By using differential equation geometry theory, the existence of periodic solution and the attrac- tion region of the system have been obtained, which ensures that injections in such an automated way can keep the blood glucose concentration under control. The simula- tion results verify that the better insulin injection strategy in closed-loop control is a larger dose but longer interval rather than a smaller dose but shorter interval. Besides, our numerical analysis reveals that medicine studies and practice that slow down the insulin degradation are helpful for the plasma glucose control. Our findings can provide significant guidance in both design of artificial pancreas and clinical treatment.