An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an...In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.展开更多
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
文摘In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.