A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed ...Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.展开更多
The piston crank mechanism is an important component of a reciprocating piston engine. It is an inherent vibration system, and as such, the calculation of unbalance quantity is a critical procedure in balancing mechan...The piston crank mechanism is an important component of a reciprocating piston engine. It is an inherent vibration system, and as such, the calculation of unbalance quantity is a critical procedure in balancing mechanism design, which is adopted to balance inertia loading. The traditional method usually applies a Taylor series expansion with the crank-conrod ratio, then a Fourier transform with the crank angle. The Taylor expansion generally ignores the influence on calculations resulting from the high order terms. However, the high order terms of the Taylor expansion will also contribute to the low order terms in the Fourier series. This will induce poor precision in the inertia loading calculation, especially in a high crank-conrod ratio engine. Thus, this paper proposes a new closed-form method, which only adopts a Fourier transformation for the calculation. The coefficients of the Fourier transformation terms contain the contributions of all order terms of the crank-conrod ratio. Therefore, we named it as a closed-form method. Compared with the traditional method, the closed-form method improves the numerical accuracy of the secondary reciprocating inertia force by 1.5%–4%, when the crank-conrod ratio varies from 0.25 to 0.4. Using this new closedform method to design a balancing mechanism, the primary and secondary reciprocating inertia forces can be completely balanced. For an engine, where the primary and secondary inertia forces are balanced, the ratio of the residual inertia force to the total inertia force using the traditional method is 1.5%, while the ratio decreases to 0.5% using the closed-form method. The closed-form method is independent of engine configurations, including centric and eccentric engines, and single and multicylinder engines. Examples of applications using the proposed method are provided.展开更多
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.
基金Supported by the National Natural Science Foundation of China(61473072)
文摘Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.
文摘The piston crank mechanism is an important component of a reciprocating piston engine. It is an inherent vibration system, and as such, the calculation of unbalance quantity is a critical procedure in balancing mechanism design, which is adopted to balance inertia loading. The traditional method usually applies a Taylor series expansion with the crank-conrod ratio, then a Fourier transform with the crank angle. The Taylor expansion generally ignores the influence on calculations resulting from the high order terms. However, the high order terms of the Taylor expansion will also contribute to the low order terms in the Fourier series. This will induce poor precision in the inertia loading calculation, especially in a high crank-conrod ratio engine. Thus, this paper proposes a new closed-form method, which only adopts a Fourier transformation for the calculation. The coefficients of the Fourier transformation terms contain the contributions of all order terms of the crank-conrod ratio. Therefore, we named it as a closed-form method. Compared with the traditional method, the closed-form method improves the numerical accuracy of the secondary reciprocating inertia force by 1.5%–4%, when the crank-conrod ratio varies from 0.25 to 0.4. Using this new closedform method to design a balancing mechanism, the primary and secondary reciprocating inertia forces can be completely balanced. For an engine, where the primary and secondary inertia forces are balanced, the ratio of the residual inertia force to the total inertia force using the traditional method is 1.5%, while the ratio decreases to 0.5% using the closed-form method. The closed-form method is independent of engine configurations, including centric and eccentric engines, and single and multicylinder engines. Examples of applications using the proposed method are provided.