A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics...A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.展开更多
The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate...The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data展开更多
To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural bu...To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted,and the structural buckling safety margin equation of supercavitating vehicles was established.The indefinite information was described by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method.Considering interval variables as random variables which satisfy uniform distribution,the Monte-Carlo method was used to calculate the non-probabilistic failure degree.Numerical examples of supercavitating vehicles were presented.Under different ratios of base diameter to cavitator diameter,the change tendency of non-probabilistic failure degree of structural buckling of supercavitating vehicles with or without engine thrust was studied along with the variety of speed.展开更多
Hall thruster is a type of electric propulsion thruster which is often regarded as a moderate specific im- pulse space propulsion technology and is used primarily for station keeping and orbit maintenance tasks. Magne...Hall thruster is a type of electric propulsion thruster which is often regarded as a moderate specific im- pulse space propulsion technology and is used primarily for station keeping and orbit maintenance tasks. Magnetic field is the most important aspect in Hall thruster's design. Each time the performance improvement of Hall thrusters is accompanied with the regeneration of magnetic field design. Now, all the maior space nations treat the magnetic field design as the key technology for Hall thrusters, and many Hall thrusters have emerged in recent years, for example, BPT-4000 and NASA- 173M. In China, based on magnetic focus technology, the Beijing Institute of Control Engineer- ing (BICE) has been developing Hall thrusters ranged from hundreds of watts to 5 kilowatts, including the IS00 W HEP- 100MF and the 5 kW HEP- 140blF Hall thrusters. This paper briefly reviews the development of the HEP-XXMF series Hall thruster. The principle of the Hall thruster, the design methods and the current status of HEP-100MF and HEP- 140MF are discussed in the paper.展开更多
This paper provides a method to infer finger flexing motions using a 4-channel surface Electronyogram (sEMG). Surface EMGs are hannless to the humnan body and easily done. However, they do not reflect the activity o...This paper provides a method to infer finger flexing motions using a 4-channel surface Electronyogram (sEMG). Surface EMGs are hannless to the humnan body and easily done. However, they do not reflect the activity of specific nerves or muscles, unlike invasive EMCs. On the other hand, the non-invasive type is difficult to use for discriminating various motions while using only a small number of electrodes. Surface EMG data in this study were obtained from four electodes placed around the forearm. The motions were the flexion of each 5 single fingers (thumb, index finger, middle finger, ring finger, and little fingers). One subject was trained with these motions and another left was untrained. The maximum likelihood estimation method was used to infer the finger motion. Experimental results have showed that this method could be useful for recognizing finger motions.The average accuracy was as high as 95%.展开更多
To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing b...To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.展开更多
When the liquid propellant thruster works,its plume field would contain many propellant liquid droplets,especially at pulse state.Liquid droplets may move along with the gas flow and deposit on the components of space...When the liquid propellant thruster works,its plume field would contain many propellant liquid droplets,especially at pulse state.Liquid droplets may move along with the gas flow and deposit on the components of spacecraft as contamination.The simulation of the plume field involving the gas molecules and liquid droplets is an important part in contamination studies of thruster plume.Based on the PWS software developed by Beihang University(BUAA),axial-symmetric two-phase direct simulation Monte Carlo(DSMC) method is used with the liquid droplet taken as a kind of solid particle.The computation of gas-to-particle effect and gas reflection on the particle surface are decoupled.The inter-particle collision is also considered.The gas parameters at nozzle exit of 120N engine after 20 ms pulse work are taken as the entrance condition of the numerical simulation.Four test cases are conducted for comparison of different collision modules.Simulation results show that the effects of liquid propellant droplets mainly concentrate near the axis line of engine.The particle-to-gas collision would cause evident differences in the gas field and subtle differences in the particle phase.The liquid droplets in the plume field are generally accelerated and convected by the gas molecules.The DSMC method is proved to be a feasible solver to numerically simulate the two-phase flow involving solid phase and rarefied gas flow.展开更多
基金Projects(11772188,11132007,11202126)supported by the National Natural Science Foundation of ChinaProject(11ZR1417000)supported by the Natural Science Foundation of Shanghai,China
文摘A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.
文摘The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data
基金Sponsored by the National High-Tech Research and Development Program of China(863 Program)(Grant No. 2006AA04Z410)
文摘To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted,and the structural buckling safety margin equation of supercavitating vehicles was established.The indefinite information was described by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method.Considering interval variables as random variables which satisfy uniform distribution,the Monte-Carlo method was used to calculate the non-probabilistic failure degree.Numerical examples of supercavitating vehicles were presented.Under different ratios of base diameter to cavitator diameter,the change tendency of non-probabilistic failure degree of structural buckling of supercavitating vehicles with or without engine thrust was studied along with the variety of speed.
文摘Hall thruster is a type of electric propulsion thruster which is often regarded as a moderate specific im- pulse space propulsion technology and is used primarily for station keeping and orbit maintenance tasks. Magnetic field is the most important aspect in Hall thruster's design. Each time the performance improvement of Hall thrusters is accompanied with the regeneration of magnetic field design. Now, all the maior space nations treat the magnetic field design as the key technology for Hall thrusters, and many Hall thrusters have emerged in recent years, for example, BPT-4000 and NASA- 173M. In China, based on magnetic focus technology, the Beijing Institute of Control Engineer- ing (BICE) has been developing Hall thrusters ranged from hundreds of watts to 5 kilowatts, including the IS00 W HEP- 100MF and the 5 kW HEP- 140blF Hall thrusters. This paper briefly reviews the development of the HEP-XXMF series Hall thruster. The principle of the Hall thruster, the design methods and the current status of HEP-100MF and HEP- 140MF are discussed in the paper.
基金supported by the The Ministry of Knowledge Economy,Koreaunder the ITRC(Information Technology Research Center)support programsupervised by the ⅡTA(Institute for Information Technology Advancement)ⅡTA-2008-C1090-0803-0006
文摘This paper provides a method to infer finger flexing motions using a 4-channel surface Electronyogram (sEMG). Surface EMGs are hannless to the humnan body and easily done. However, they do not reflect the activity of specific nerves or muscles, unlike invasive EMCs. On the other hand, the non-invasive type is difficult to use for discriminating various motions while using only a small number of electrodes. Surface EMG data in this study were obtained from four electodes placed around the forearm. The motions were the flexion of each 5 single fingers (thumb, index finger, middle finger, ring finger, and little fingers). One subject was trained with these motions and another left was untrained. The maximum likelihood estimation method was used to infer the finger motion. Experimental results have showed that this method could be useful for recognizing finger motions.The average accuracy was as high as 95%.
基金Sponsored by the National Natural Science Foundation of China(Grant No. NSFC-60572010)
文摘To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.
文摘When the liquid propellant thruster works,its plume field would contain many propellant liquid droplets,especially at pulse state.Liquid droplets may move along with the gas flow and deposit on the components of spacecraft as contamination.The simulation of the plume field involving the gas molecules and liquid droplets is an important part in contamination studies of thruster plume.Based on the PWS software developed by Beihang University(BUAA),axial-symmetric two-phase direct simulation Monte Carlo(DSMC) method is used with the liquid droplet taken as a kind of solid particle.The computation of gas-to-particle effect and gas reflection on the particle surface are decoupled.The inter-particle collision is also considered.The gas parameters at nozzle exit of 120N engine after 20 ms pulse work are taken as the entrance condition of the numerical simulation.Four test cases are conducted for comparison of different collision modules.Simulation results show that the effects of liquid propellant droplets mainly concentrate near the axis line of engine.The particle-to-gas collision would cause evident differences in the gas field and subtle differences in the particle phase.The liquid droplets in the plume field are generally accelerated and convected by the gas molecules.The DSMC method is proved to be a feasible solver to numerically simulate the two-phase flow involving solid phase and rarefied gas flow.