This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met...This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.展开更多
A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics...A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
To design a more effective blade pitch adjustment mechanism,research was done on changes to the hydrodynamic characteristics of VVPs(Variable Vector Propeller) caused by different rules for changing pitch angle. A mat...To design a more effective blade pitch adjustment mechanism,research was done on changes to the hydrodynamic characteristics of VVPs(Variable Vector Propeller) caused by different rules for changing pitch angle. A mathematical method for predicting the hydrodynamic characteristics of a VVP under unsteady conditions is presented based on the panel method. Mathematical models for evaluation based on potential flow theory and the Green theorem are also presented. The hydrodynamic characteristics are numerically predicted. To avoid gaps between panels,hyperboloidal quadrilateral panels were used. The pressure Kutta condition on the trailing edge of the VVP blade was satisfied by the Newton-Raphson iterative procedure. The influence coefficients of the panels were calculated by Morino's analytical formulations to improve numerical calculation speed,and the method developed by Yanagizawa was used to eliminate the point singularity on derivation calculus while determining the velocities on propeller surfaces. The calculation results show that it's best for the hydrodynamic characteristics of the VVP that pitch angle changes follow the sine rule.展开更多
To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural bu...To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted,and the structural buckling safety margin equation of supercavitating vehicles was established.The indefinite information was described by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method.Considering interval variables as random variables which satisfy uniform distribution,the Monte-Carlo method was used to calculate the non-probabilistic failure degree.Numerical examples of supercavitating vehicles were presented.Under different ratios of base diameter to cavitator diameter,the change tendency of non-probabilistic failure degree of structural buckling of supercavitating vehicles with or without engine thrust was studied along with the variety of speed.展开更多
Hall thruster is a type of electric propulsion thruster which is often regarded as a moderate specific im- pulse space propulsion technology and is used primarily for station keeping and orbit maintenance tasks. Magne...Hall thruster is a type of electric propulsion thruster which is often regarded as a moderate specific im- pulse space propulsion technology and is used primarily for station keeping and orbit maintenance tasks. Magnetic field is the most important aspect in Hall thruster's design. Each time the performance improvement of Hall thrusters is accompanied with the regeneration of magnetic field design. Now, all the maior space nations treat the magnetic field design as the key technology for Hall thrusters, and many Hall thrusters have emerged in recent years, for example, BPT-4000 and NASA- 173M. In China, based on magnetic focus technology, the Beijing Institute of Control Engineer- ing (BICE) has been developing Hall thrusters ranged from hundreds of watts to 5 kilowatts, including the IS00 W HEP- 100MF and the 5 kW HEP- 140blF Hall thrusters. This paper briefly reviews the development of the HEP-XXMF series Hall thruster. The principle of the Hall thruster, the design methods and the current status of HEP-100MF and HEP- 140MF are discussed in the paper.展开更多
文摘This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.
基金Projects(11772188,11132007,11202126)supported by the National Natural Science Foundation of ChinaProject(11ZR1417000)supported by the Natural Science Foundation of Shanghai,China
文摘A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
文摘To design a more effective blade pitch adjustment mechanism,research was done on changes to the hydrodynamic characteristics of VVPs(Variable Vector Propeller) caused by different rules for changing pitch angle. A mathematical method for predicting the hydrodynamic characteristics of a VVP under unsteady conditions is presented based on the panel method. Mathematical models for evaluation based on potential flow theory and the Green theorem are also presented. The hydrodynamic characteristics are numerically predicted. To avoid gaps between panels,hyperboloidal quadrilateral panels were used. The pressure Kutta condition on the trailing edge of the VVP blade was satisfied by the Newton-Raphson iterative procedure. The influence coefficients of the panels were calculated by Morino's analytical formulations to improve numerical calculation speed,and the method developed by Yanagizawa was used to eliminate the point singularity on derivation calculus while determining the velocities on propeller surfaces. The calculation results show that it's best for the hydrodynamic characteristics of the VVP that pitch angle changes follow the sine rule.
基金Sponsored by the National High-Tech Research and Development Program of China(863 Program)(Grant No. 2006AA04Z410)
文摘To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted,and the structural buckling safety margin equation of supercavitating vehicles was established.The indefinite information was described by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method.Considering interval variables as random variables which satisfy uniform distribution,the Monte-Carlo method was used to calculate the non-probabilistic failure degree.Numerical examples of supercavitating vehicles were presented.Under different ratios of base diameter to cavitator diameter,the change tendency of non-probabilistic failure degree of structural buckling of supercavitating vehicles with or without engine thrust was studied along with the variety of speed.
文摘Hall thruster is a type of electric propulsion thruster which is often regarded as a moderate specific im- pulse space propulsion technology and is used primarily for station keeping and orbit maintenance tasks. Magnetic field is the most important aspect in Hall thruster's design. Each time the performance improvement of Hall thrusters is accompanied with the regeneration of magnetic field design. Now, all the maior space nations treat the magnetic field design as the key technology for Hall thrusters, and many Hall thrusters have emerged in recent years, for example, BPT-4000 and NASA- 173M. In China, based on magnetic focus technology, the Beijing Institute of Control Engineer- ing (BICE) has been developing Hall thrusters ranged from hundreds of watts to 5 kilowatts, including the IS00 W HEP- 100MF and the 5 kW HEP- 140blF Hall thrusters. This paper briefly reviews the development of the HEP-XXMF series Hall thruster. The principle of the Hall thruster, the design methods and the current status of HEP-100MF and HEP- 140MF are discussed in the paper.