A two dimensional mathematical model was developed to predict the performance characteristics for direct current, linear channel MHD propulsion system in a closed loop environment. The results of analytical and exper...A two dimensional mathematical model was developed to predict the performance characteristics for direct current, linear channel MHD propulsion system in a closed loop environment. The results of analytical and experimental studies of the linear channel MHD propulsor are described. Compared with the data of experiment, the correctness of the computation program is validated.展开更多
In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model o...In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.展开更多
The main requirement of a vector controller is knowing the magnitude and position of the rotating flow in the rotor. This feature permits to use either flow sensors or flow estimators. The solution chosen was the esti...The main requirement of a vector controller is knowing the magnitude and position of the rotating flow in the rotor. This feature permits to use either flow sensors or flow estimators. The solution chosen was the estimation of rotor flux with the hybrid neuro-fuzzy system. The motor characteristics are: 3.75 kW (5 HP), two pole-pair, operate at 60 Hz and air-gap length 0.2 mm. The ANFIS (adaptive neuro-fuzzy inference system) was used to tune the membership functions in fuzzy system. The hybrid estimator aims at compensating possible parametric variations of the machine caused by agents, such as temperature or nucleus saturation. The simulated results have shown good performance.展开更多
The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the...The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.展开更多
Pulse detonation engine (PDE) is expected for a next-generation propulsion system. PDE is a promising engine that can generates power and thrust by using intermittent detonation. Promotion of deflagration to detonatio...Pulse detonation engine (PDE) is expected for a next-generation propulsion system. PDE is a promising engine that can generates power and thrust by using intermittent detonation. Promotion of deflagration to detonation transition (below DDT) is a key issue to realize this system. PDE has experimentally been investigated, and it was confirmed that detonation tubes with U-shaped bends are useful for fast DDT. However, the mechanism of DDT promotion due to U-bends has not been well clarified. In the present study, the influence of a U-bend on detona-tion wave propagation is researched with computational fluid dynamics (CFD). The numerical results show that detonation wave disappears once near the U-bend inlet and restarts after passing through it. In addition, it was found that the use of the U-bend with small channel width and curvature radius can induce fast DDT.展开更多
文摘A two dimensional mathematical model was developed to predict the performance characteristics for direct current, linear channel MHD propulsion system in a closed loop environment. The results of analytical and experimental studies of the linear channel MHD propulsor are described. Compared with the data of experiment, the correctness of the computation program is validated.
文摘In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.
文摘The main requirement of a vector controller is knowing the magnitude and position of the rotating flow in the rotor. This feature permits to use either flow sensors or flow estimators. The solution chosen was the estimation of rotor flux with the hybrid neuro-fuzzy system. The motor characteristics are: 3.75 kW (5 HP), two pole-pair, operate at 60 Hz and air-gap length 0.2 mm. The ANFIS (adaptive neuro-fuzzy inference system) was used to tune the membership functions in fuzzy system. The hybrid estimator aims at compensating possible parametric variations of the machine caused by agents, such as temperature or nucleus saturation. The simulated results have shown good performance.
文摘The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.
文摘Pulse detonation engine (PDE) is expected for a next-generation propulsion system. PDE is a promising engine that can generates power and thrust by using intermittent detonation. Promotion of deflagration to detonation transition (below DDT) is a key issue to realize this system. PDE has experimentally been investigated, and it was confirmed that detonation tubes with U-shaped bends are useful for fast DDT. However, the mechanism of DDT promotion due to U-bends has not been well clarified. In the present study, the influence of a U-bend on detona-tion wave propagation is researched with computational fluid dynamics (CFD). The numerical results show that detonation wave disappears once near the U-bend inlet and restarts after passing through it. In addition, it was found that the use of the U-bend with small channel width and curvature radius can induce fast DDT.