A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point ...A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point of view, a new scheme using the one-way directional communication link, is presented. Moreover, 8-state Kalman filter is proposed for integrated DGPS/DR system. When field tests are carried out using two C/A code GARMIN GPS receiver, the positioning accuracy less than 5 m (1σ) is achieved.展开更多
For the purpose of positioning in various scenes, including indoors, on open road, and side street buildings, a low-cost personal navigation unit is put forward. The unit consists of a low-cost MEMS(micro-electro-mech...For the purpose of positioning in various scenes, including indoors, on open road, and side street buildings, a low-cost personal navigation unit is put forward. The unit consists of a low-cost MEMS(micro-electro-mechanical system) accelerometer, a gyroscope, a magnetometer and a GPS(global positioning system) chip, and it is capable of switching modes between indoor and outdoor situations seamlessly. The outdoor mode is MIMU(MEMS-inertial measurement unit)/GPS/magnetometer integrated mode and the indoor mode is MIMU/magnetometer integrated mode. The outdoor algorithm uses the extended Kalman filter to fuse data and provide optimum parameters. The indoor algorithm is dead reckoning, which uses vertical and forward accelerations to judge steps and uses a magnetometer to define heading. The two-axis acceleration data is used to calculate the adaptive threshold and estimate the confidence value of the steps, and when the confidence of both two axes data meet the conditions, the steps can be detected in the adaptive time windows. The detection precision is more than 95%. An experiment was conducted in complex situations. The experiment participant wearing the unit walked about 1 600 m in the experiment. The results show that the positioning error is less than 0.2% of the total route distance.展开更多
With the development of rail transit,subway is playing an increasingly important role in peoples daily life.The positioning technology of subway is the key of communication based on train control system(CBTC).Consider...With the development of rail transit,subway is playing an increasingly important role in peoples daily life.The positioning technology of subway is the key of communication based on train control system(CBTC).Considering that the global positioning system(GPS)cant be utilized in the subway and the ground equipment is complex and expensive,a self-positioning method based on inertial measurement unit(IMU)and speed sensor is put forward,and the track electronic map is used to reduce the error.This method can suppress the error divergence of Strapdown inertial navigation system(SINS)and reduce the cumulative error of dead reckoning(DR)due to attitude error.In accordance with the particularity of railway lines,using the least squares method to match the line and revise the error caused by the navigation,can greatly improve the positioning accuracy and reduce the dependency on the ground equipment,and the costs of construction and maintenance can be lowered.展开更多
文摘A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point of view, a new scheme using the one-way directional communication link, is presented. Moreover, 8-state Kalman filter is proposed for integrated DGPS/DR system. When field tests are carried out using two C/A code GARMIN GPS receiver, the positioning accuracy less than 5 m (1σ) is achieved.
基金The National Natural Science Foundation of China(No.61773113)International Special Projects for Scientific and Technological Cooperation(No.2014DFR80750)the National Key Research and Development Program of China(No.2016YFC0303006,2017YFC0601601)
文摘For the purpose of positioning in various scenes, including indoors, on open road, and side street buildings, a low-cost personal navigation unit is put forward. The unit consists of a low-cost MEMS(micro-electro-mechanical system) accelerometer, a gyroscope, a magnetometer and a GPS(global positioning system) chip, and it is capable of switching modes between indoor and outdoor situations seamlessly. The outdoor mode is MIMU(MEMS-inertial measurement unit)/GPS/magnetometer integrated mode and the indoor mode is MIMU/magnetometer integrated mode. The outdoor algorithm uses the extended Kalman filter to fuse data and provide optimum parameters. The indoor algorithm is dead reckoning, which uses vertical and forward accelerations to judge steps and uses a magnetometer to define heading. The two-axis acceleration data is used to calculate the adaptive threshold and estimate the confidence value of the steps, and when the confidence of both two axes data meet the conditions, the steps can be detected in the adaptive time windows. The detection precision is more than 95%. An experiment was conducted in complex situations. The experiment participant wearing the unit walked about 1 600 m in the experiment. The results show that the positioning error is less than 0.2% of the total route distance.
基金Gansu Province Natural Youth Fund(No.1606RJYA225)Gansu Province Science and Technology Support Program(No.1604GKCA009)+1 种基金Natural Science Foundation of Gansu Province(No.1606RJYA225)Gansu Province Science and Technology Support Program(No.1604GKCA009)
文摘With the development of rail transit,subway is playing an increasingly important role in peoples daily life.The positioning technology of subway is the key of communication based on train control system(CBTC).Considering that the global positioning system(GPS)cant be utilized in the subway and the ground equipment is complex and expensive,a self-positioning method based on inertial measurement unit(IMU)and speed sensor is put forward,and the track electronic map is used to reduce the error.This method can suppress the error divergence of Strapdown inertial navigation system(SINS)and reduce the cumulative error of dead reckoning(DR)due to attitude error.In accordance with the particularity of railway lines,using the least squares method to match the line and revise the error caused by the navigation,can greatly improve the positioning accuracy and reduce the dependency on the ground equipment,and the costs of construction and maintenance can be lowered.