The results of field tests of the catalyst "Mukhamedzhan-l" for the detoxification of propellant UDMH (unsymmetrical dimethylhydrazine) in the position the space center "Baikonur" in Kazakhstan were studied. Res...The results of field tests of the catalyst "Mukhamedzhan-l" for the detoxification of propellant UDMH (unsymmetrical dimethylhydrazine) in the position the space center "Baikonur" in Kazakhstan were studied. Results of field tests have shown high efficiency of the catalyst "Mukhamedzhan- 1" for detoxification UDMH.展开更多
Initial firing temperatures play an important role on the combustion rate of propellant. In gun propellants, initial temperature is a key factor for both accuracy and safety. Ideally, the initial temperature of the pr...Initial firing temperatures play an important role on the combustion rate of propellant. In gun propellants, initial temperature is a key factor for both accuracy and safety. Ideally, the initial temperature of the propellant should not influence the ballistic properties of the round. Nevertheless, constant initial temperature coefficients can not be achieved easily. This work focuses on the influence of the firing temperature on the ballistic properties, the mechanical integrity and the sensitivity to impact of nitrocellulose based propellants. Combustion rates have been determined by closed vessel tests. Ballistic properties have been investigated by firing 5.56 cartridges. The propellants have been conditioned at temperatures ranging from -54 ℃ to +71 ℃ before firing. The largest temperature coefficient is observed at high temperatures. The temperature sensitivity of the peak pressure in the combustion chamber can not be fully explained by the results from the closed vessel test. The authors speculated that the mechanical behaviour of the propellant grains at low temperatures influences also the overall ballistic properties of the round. Impact tests with propellants conditioned at low and high temperatures permit to investigate their mechanical strength under extreme temperatures and to better understand the propellant performance during firing. Tests on aged propellants have been conducted as well.展开更多
A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage...A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage of magnesium,a binder and a small amount of oxidant,was used as a hydro reactive fuel.Cold water was injected into the combustion chamber as a main oxidant.A scaled-down experimental engine was tested in a direct-connect ground testing system to characterize the factors influencing the engine performance.The results show that the increasing of total water/fuel ratio,an addition of secondary water intake along the combustion chamber,a larger magnesium content in the solid propellant,a smaller primary water injection angle towards the coming main flow,and a higher primary injection pressure were all able to promote the engine performance.The maximum engine performance was obtained in test 08,and with all tests,an appropriate set of parameters and conditions for the optimum engine performance were determined展开更多
Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism diffe...Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism different from both double-base propellants and composite propellants.In order to study the combustion mechanism of NEPE propellants,we improved the free radical cracking model of previous research to make it capable of predicting the burning rate of NEPE propellants.To study the combustion characteristics and provide data support for the model,an experimental system was built and four kinds of NEPE propellants with different compositions and grain size distributions were tested.The results show that our modified model can reflect the combustion characteristics of NEPE propellants with an acceptable accuracy.The difference between the model and the experimental data is mainly caused by uncertain environmental factors and the ignorance of interactions between components.Both the experimental data and the results predicted by the model show that increasing the backpressure helps to increase the burning rate of NEPE propellants.Furthermore,the grain size of the oxidizer inside the NEPE propellant has a more severe impact on the burning rate but a lighter impact on the burning rate pressure exponent in comparison with the grain size of aluminum.For aluminum-free NEPE propellants,the reaction in the gas phase is dominant in the combustion process while adding aluminum into the propellant makes the solid phase dominant in the final stage.The combustion of fine aluminum particles near the burning surface generates heat feedback to the burning surface which evidently influences the surface temperature.However,the agglomeration of coarse aluminum particles has little effect on the burning surface temperature.展开更多
文摘The results of field tests of the catalyst "Mukhamedzhan-l" for the detoxification of propellant UDMH (unsymmetrical dimethylhydrazine) in the position the space center "Baikonur" in Kazakhstan were studied. Results of field tests have shown high efficiency of the catalyst "Mukhamedzhan- 1" for detoxification UDMH.
文摘Initial firing temperatures play an important role on the combustion rate of propellant. In gun propellants, initial temperature is a key factor for both accuracy and safety. Ideally, the initial temperature of the propellant should not influence the ballistic properties of the round. Nevertheless, constant initial temperature coefficients can not be achieved easily. This work focuses on the influence of the firing temperature on the ballistic properties, the mechanical integrity and the sensitivity to impact of nitrocellulose based propellants. Combustion rates have been determined by closed vessel tests. Ballistic properties have been investigated by firing 5.56 cartridges. The propellants have been conditioned at temperatures ranging from -54 ℃ to +71 ℃ before firing. The largest temperature coefficient is observed at high temperatures. The temperature sensitivity of the peak pressure in the combustion chamber can not be fully explained by the results from the closed vessel test. The authors speculated that the mechanical behaviour of the propellant grains at low temperatures influences also the overall ballistic properties of the round. Impact tests with propellants conditioned at low and high temperatures permit to investigate their mechanical strength under extreme temperatures and to better understand the propellant performance during firing. Tests on aged propellants have been conducted as well.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 61350)
文摘A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage of magnesium,a binder and a small amount of oxidant,was used as a hydro reactive fuel.Cold water was injected into the combustion chamber as a main oxidant.A scaled-down experimental engine was tested in a direct-connect ground testing system to characterize the factors influencing the engine performance.The results show that the increasing of total water/fuel ratio,an addition of secondary water intake along the combustion chamber,a larger magnesium content in the solid propellant,a smaller primary water injection angle towards the coming main flow,and a higher primary injection pressure were all able to promote the engine performance.The maximum engine performance was obtained in test 08,and with all tests,an appropriate set of parameters and conditions for the optimum engine performance were determined
基金Project supported by the National Natural Science Foundation of China(No.11572349)the Natural Science Foundation of Hunan Province(No.2018JJ3606),China。
文摘Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism different from both double-base propellants and composite propellants.In order to study the combustion mechanism of NEPE propellants,we improved the free radical cracking model of previous research to make it capable of predicting the burning rate of NEPE propellants.To study the combustion characteristics and provide data support for the model,an experimental system was built and four kinds of NEPE propellants with different compositions and grain size distributions were tested.The results show that our modified model can reflect the combustion characteristics of NEPE propellants with an acceptable accuracy.The difference between the model and the experimental data is mainly caused by uncertain environmental factors and the ignorance of interactions between components.Both the experimental data and the results predicted by the model show that increasing the backpressure helps to increase the burning rate of NEPE propellants.Furthermore,the grain size of the oxidizer inside the NEPE propellant has a more severe impact on the burning rate but a lighter impact on the burning rate pressure exponent in comparison with the grain size of aluminum.For aluminum-free NEPE propellants,the reaction in the gas phase is dominant in the combustion process while adding aluminum into the propellant makes the solid phase dominant in the final stage.The combustion of fine aluminum particles near the burning surface generates heat feedback to the burning surface which evidently influences the surface temperature.However,the agglomeration of coarse aluminum particles has little effect on the burning surface temperature.