期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrodynamic Efficiency Improvement of the High Skew Propeller for the Underwater Vehicle Under Surface and Submerged Conditions 被引量:1
1
作者 Hassan Ghassemi Parviz Ghadimi 《Journal of Ocean University of China》 SCIE CAS 2011年第4期314-324,共11页
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf... An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency. 展开更多
关键词 在水下车辆 推进器设计因素 高斜的推进器 表面和沉没条件 水动力学推进器效率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部