针对传统的酒店评论摘要生成模型在生成摘要过程中存在对评论的上下文理解不够充分、并行能力不足和长距离文本依赖缺陷的问题,提出了一种基于TRF-IM(improved mask for transformer)模型的个性化酒店评论摘要生成方法。该方法利用Trans...针对传统的酒店评论摘要生成模型在生成摘要过程中存在对评论的上下文理解不够充分、并行能力不足和长距离文本依赖缺陷的问题,提出了一种基于TRF-IM(improved mask for transformer)模型的个性化酒店评论摘要生成方法。该方法利用Transformer译码器结构对评论摘要任务进行建模,通过改进其结构中的掩码方式,使得源评论内容都能够更好地学习到上下文语义信息;同时引入了用户类型的个性化词特征信息,使其生成高质量且满足用户需求的个性化酒店评论摘要。实验结果表明,该模型相比传统模型在ROUGE指标上取得了更高的分数,生成了高质量的个性化酒店评论摘要。展开更多
文摘针对传统的酒店评论摘要生成模型在生成摘要过程中存在对评论的上下文理解不够充分、并行能力不足和长距离文本依赖缺陷的问题,提出了一种基于TRF-IM(improved mask for transformer)模型的个性化酒店评论摘要生成方法。该方法利用Transformer译码器结构对评论摘要任务进行建模,通过改进其结构中的掩码方式,使得源评论内容都能够更好地学习到上下文语义信息;同时引入了用户类型的个性化词特征信息,使其生成高质量且满足用户需求的个性化酒店评论摘要。实验结果表明,该模型相比传统模型在ROUGE指标上取得了更高的分数,生成了高质量的个性化酒店评论摘要。