To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con...To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.展开更多
The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsi...The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsion vibration in the case of special stimulated vibration is established. A design formula of anisotropic filament-wound cylinder to reduce the torsion vibration of axle components is obtained. The results indicate that by putting the filament-wound cylinder on an axis, the torsion vibration of the axis can be reduced effectively.展开更多
The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detr...The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detrimental effects of HST-induced vibrations.This study is focused on the potential implementation of an innovative mitigation technique to alleviate the developed vibrations.In particular,the use of expanded polystyrene(EPS)blocks as partial fill material of embankment slopes was examined.The efficiency of the proposed mitigation technique was numerically investigated.More specifically,a 3 D soil-track model was developed to study the cross-section of a railway track,embankment,and the underlying soil layers.The passage of the HST,Thalys,was simulated using a moving load method,and the soil response was calculated at several distances from the track.Several parameters influenced the effectiveness of the examined mitigation measure.Therefore,to ensure an optimal design,a robust procedure is necessary which considers the impact of these factors.Hence,the implementation of EPS blocks on several embankments with different geometry,in terms of height and slope angle,was investigated.展开更多
文摘To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.
文摘The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsion vibration in the case of special stimulated vibration is established. A design formula of anisotropic filament-wound cylinder to reduce the torsion vibration of axle components is obtained. The results indicate that by putting the filament-wound cylinder on an axis, the torsion vibration of the axis can be reduced effectively.
基金Project supported by Greece and the European Union(European Social Fund)through the Operational Programme“Human Resources Development,Education,and Lifelong Learning 2014-2020”in the Context of the Project“Strengthening Human Resources Research Potential via Doctorate Research-2nd Cycle”(No.MIS 5000432)。
文摘The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detrimental effects of HST-induced vibrations.This study is focused on the potential implementation of an innovative mitigation technique to alleviate the developed vibrations.In particular,the use of expanded polystyrene(EPS)blocks as partial fill material of embankment slopes was examined.The efficiency of the proposed mitigation technique was numerically investigated.More specifically,a 3 D soil-track model was developed to study the cross-section of a railway track,embankment,and the underlying soil layers.The passage of the HST,Thalys,was simulated using a moving load method,and the soil response was calculated at several distances from the track.Several parameters influenced the effectiveness of the examined mitigation measure.Therefore,to ensure an optimal design,a robust procedure is necessary which considers the impact of these factors.Hence,the implementation of EPS blocks on several embankments with different geometry,in terms of height and slope angle,was investigated.