A composite polymer electrolyte of Polyethylene oxide (PEO) LiClO 4 containing fine Al 2O 3 particles was studied by using differential scanning calorimetry, infrared spectroscopy and electrochemical impedance spectro...A composite polymer electrolyte of Polyethylene oxide (PEO) LiClO 4 containing fine Al 2O 3 particles was studied by using differential scanning calorimetry, infrared spectroscopy and electrochemical impedance spectroscopy. Compared with the polymer electrolyte without Al 2O 3 particles, the glass transition temperature and the degree of crystallinity were decreased, and the room temperature conductivity of PEO LiClO 4 Al 2O 3 composite polymer electrolyte was considerably enhanced. Moreover, the equivalent circuits and the effect of dc potential on impedance spectroscopy were discussed.展开更多
Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via ...Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.展开更多
Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) proc...Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.展开更多
Based on the deficiency of catalytic elements in methane sensors such as sintering,activity decrease and surface area reduction at high temperature, three differentnano vectors Ce-Zr-Al_2O_3, Ce-Al_2O_3, and Zr-Al_2O_...Based on the deficiency of catalytic elements in methane sensors such as sintering,activity decrease and surface area reduction at high temperature, three differentnano vectors Ce-Zr-Al_2O_3, Ce-Al_2O_3, and Zr-Al_2O_3 were prepared via sol-gel technique inthe experiment.BET surface area, catalytic activity and thermal stability were tested andcompared.It is found from the experiment that the Ce-doped Al_2O_3 vector possesseshigher catalytic activity than pure Al_2O_3 vector.Zr-doped Al_2O_3 vector can enhance thethermal stability of methane sensors.Ce-Zr-Al solid solution can be obtained by the presenceof Ce and Zr doped with Al_2O_3.The reaction activity and thermal stability of catalyticsensors were improved because of the unique synergy effect from Ce-Zr-O.Among themixed cocatalysts, Ce-Zr-O was reported to be an excellent cocatalyst material.The performanceof methane sensors can be improved significantly via the modification ofCe-Zr-Al_2O_3 vector.展开更多
Metal oxide hollow structures are of great inter- est in many current and emerging areas of technology. This paper presents a facile and controlled protocol for the syn- thesis of Al-doped CeO2 hollow-shell spheres (...Metal oxide hollow structures are of great inter- est in many current and emerging areas of technology. This paper presents a facile and controlled protocol for the syn- thesis of Al-doped CeO2 hollow-shell spheres (CHS), where the dopant confers enhanced stability and activity to the ma- terial. These Al-doped CeO2 hollow-shell spheres (ACHS) possess a controllable shell number of up to three, where the sizes of the exterior, middle, and interior spheres were about 250-100 nm,150-50 nm, and 40-10 nm, respectively, and the average shell thickness was -15 nm. The thermal stability of the ACHS structure was enhanced by the homogeneous in- corporation of AI atoms, and more active oxygen species were present compared with those in the non-doped congener. Au NPs supported on ACHS (Au/ACHS) showed superior cat- alytic performance for the reduction of p-nitrophenol. For the same Au NP content, the reaction rate constant (k) of the Au/ACHS was nearly twice that of the non-doped Au/CHS, indicating that AI doping is promising for improving the per- formance of inert or unstable oxides as catalyst supports.展开更多
Al-doped ZnO(AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells(IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performanc...Al-doped ZnO(AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells(IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performance are investigated as a function of precursor solution concentration from 0.1 mol/L to 1.0 mol/L. We demonstrate that the device with 0.1 mol/L precursor concentration of AZO buffer layers enhances the short-circuit current and the fill factor of IOSCs simultaneously. The resulting device shows that the power conversion efficiency is improved by 35.6% relative to that of the 1.0 mol/L device, due to the improved surface morphology and transmittance(300–400 nm) of AZO buffer layer.展开更多
文摘A composite polymer electrolyte of Polyethylene oxide (PEO) LiClO 4 containing fine Al 2O 3 particles was studied by using differential scanning calorimetry, infrared spectroscopy and electrochemical impedance spectroscopy. Compared with the polymer electrolyte without Al 2O 3 particles, the glass transition temperature and the degree of crystallinity were decreased, and the room temperature conductivity of PEO LiClO 4 Al 2O 3 composite polymer electrolyte was considerably enhanced. Moreover, the equivalent circuits and the effect of dc potential on impedance spectroscopy were discussed.
文摘Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.
基金supported by the Yeungnam University Research Grants in 2009
文摘Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.
基金Supported by the National Natural Science Foundation of China(60910005)
文摘Based on the deficiency of catalytic elements in methane sensors such as sintering,activity decrease and surface area reduction at high temperature, three differentnano vectors Ce-Zr-Al_2O_3, Ce-Al_2O_3, and Zr-Al_2O_3 were prepared via sol-gel technique inthe experiment.BET surface area, catalytic activity and thermal stability were tested andcompared.It is found from the experiment that the Ce-doped Al_2O_3 vector possesseshigher catalytic activity than pure Al_2O_3 vector.Zr-doped Al_2O_3 vector can enhance thethermal stability of methane sensors.Ce-Zr-Al solid solution can be obtained by the presenceof Ce and Zr doped with Al_2O_3.The reaction activity and thermal stability of catalyticsensors were improved because of the unique synergy effect from Ce-Zr-O.Among themixed cocatalysts, Ce-Zr-O was reported to be an excellent cocatalyst material.The performanceof methane sensors can be improved significantly via the modification ofCe-Zr-Al_2O_3 vector.
基金financially supported by the National Natural Science Foundation of China (51472025 and 21671016)Beijing Nova Programme Interdisciplinary Cooperation Project
文摘Metal oxide hollow structures are of great inter- est in many current and emerging areas of technology. This paper presents a facile and controlled protocol for the syn- thesis of Al-doped CeO2 hollow-shell spheres (CHS), where the dopant confers enhanced stability and activity to the ma- terial. These Al-doped CeO2 hollow-shell spheres (ACHS) possess a controllable shell number of up to three, where the sizes of the exterior, middle, and interior spheres were about 250-100 nm,150-50 nm, and 40-10 nm, respectively, and the average shell thickness was -15 nm. The thermal stability of the ACHS structure was enhanced by the homogeneous in- corporation of AI atoms, and more active oxygen species were present compared with those in the non-doped congener. Au NPs supported on ACHS (Au/ACHS) showed superior cat- alytic performance for the reduction of p-nitrophenol. For the same Au NP content, the reaction rate constant (k) of the Au/ACHS was nearly twice that of the non-doped Au/CHS, indicating that AI doping is promising for improving the per- formance of inert or unstable oxides as catalyst supports.
基金supported by the National Natural Science Foundation of China(No.61377031)the Scientific Research Foundation of Zhejiang Ocean University(No.Q1444)
文摘Al-doped ZnO(AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells(IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performance are investigated as a function of precursor solution concentration from 0.1 mol/L to 1.0 mol/L. We demonstrate that the device with 0.1 mol/L precursor concentration of AZO buffer layers enhances the short-circuit current and the fill factor of IOSCs simultaneously. The resulting device shows that the power conversion efficiency is improved by 35.6% relative to that of the 1.0 mol/L device, due to the improved surface morphology and transmittance(300–400 nm) of AZO buffer layer.