以硼掺杂金刚石(boron-doped d iamond,BDD)薄膜作基底,利用光化学反应将含有碳碳双键的烯丙胺化合物修饰在BDD表面,形成氨基单分子层,再经过酰胺键的连接使酪氨酸酶固定在氨基化的金刚石表面,从而制得酪氨酸酶修饰的电极.应用循环伏安...以硼掺杂金刚石(boron-doped d iamond,BDD)薄膜作基底,利用光化学反应将含有碳碳双键的烯丙胺化合物修饰在BDD表面,形成氨基单分子层,再经过酰胺键的连接使酪氨酸酶固定在氨基化的金刚石表面,从而制得酪氨酸酶修饰的电极.应用循环伏安法研究该电极用于酚类化合物(包括苯酚、对甲基苯酚和对苯二酚等)检测的灵敏度、线性范围及其稳定性.展开更多
采用微波等离子体化学气相沉积(MPCVD)系统制备了铈(Ce)掺杂金刚石薄膜。对Ce掺杂金刚石薄膜进行了飞行时间二次离子质谱(TOF-SIMS)和X射线光电子能谱(XPS)的表征。研究结果表明:在金刚石薄膜的深度方向上,Ce元素的质量分数呈现梯度分布...采用微波等离子体化学气相沉积(MPCVD)系统制备了铈(Ce)掺杂金刚石薄膜。对Ce掺杂金刚石薄膜进行了飞行时间二次离子质谱(TOF-SIMS)和X射线光电子能谱(XPS)的表征。研究结果表明:在金刚石薄膜的深度方向上,Ce元素的质量分数呈现梯度分布,表层中质量分数最大。当Ce掺杂通量分别为30 m L/min、45 m L/min和60 m L/min时,掺杂金刚石薄膜样品中Ce的质量分数分别为0.53%、0.86%和1.34%。展开更多
文摘以硼掺杂金刚石(boron-doped d iamond,BDD)薄膜作基底,利用光化学反应将含有碳碳双键的烯丙胺化合物修饰在BDD表面,形成氨基单分子层,再经过酰胺键的连接使酪氨酸酶固定在氨基化的金刚石表面,从而制得酪氨酸酶修饰的电极.应用循环伏安法研究该电极用于酚类化合物(包括苯酚、对甲基苯酚和对苯二酚等)检测的灵敏度、线性范围及其稳定性.
文摘采用微波等离子体化学气相沉积(MPCVD)系统制备了铈(Ce)掺杂金刚石薄膜。对Ce掺杂金刚石薄膜进行了飞行时间二次离子质谱(TOF-SIMS)和X射线光电子能谱(XPS)的表征。研究结果表明:在金刚石薄膜的深度方向上,Ce元素的质量分数呈现梯度分布,表层中质量分数最大。当Ce掺杂通量分别为30 m L/min、45 m L/min和60 m L/min时,掺杂金刚石薄膜样品中Ce的质量分数分别为0.53%、0.86%和1.34%。