Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were...The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.展开更多
A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added t...A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NOx from cigarette mainstream smoke.The catalysis and reduction of NO in laboratory were studied.A mechanism for NOx catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described.The catalysts show excellent catalytic activity for NOx removal,especially the Ag-doped OMS-2 catalyst.0.5%(mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NOx from cigarette mainstream smoke.The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.展开更多
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.
文摘The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.
文摘A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NOx from cigarette mainstream smoke.The catalysis and reduction of NO in laboratory were studied.A mechanism for NOx catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described.The catalysts show excellent catalytic activity for NOx removal,especially the Ag-doped OMS-2 catalyst.0.5%(mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NOx from cigarette mainstream smoke.The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.