Using the extended Blonder-Tinkham-Klapwijk formalism, we investigate the conductance spectra of normal metal/dx2-y2 + idxy mixed wave superconductor graphene junctions. It is found that the conductance spectra vary ...Using the extended Blonder-Tinkham-Klapwijk formalism, we investigate the conductance spectra of normal metal/dx2-y2 + idxy mixed wave superconductor graphene junctions. It is found that the conductance spectra vary strongly with the orientation of the gap and the amplitude ratio (Δ1/Δ0) of two components for dx2-y2 + idxy mixed wave. The zero bias conductance is nearly 2 and the conductance peak vanishes in doped graphene for a = 0 and Δ1/Δ0 = 1. The conductance increases with increasing the amplitude ratio of two components for α =π/4 and Δ1/Δ0 -- 1. The ZBCP becomes observable wide with 1 〈 EF/Δ0 〈 100 for α= π/4 and Δ1/Δ0 = 1. This property is different from that in normal metal/dx2-y2 wave superconductor graphene junctions.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 11074088
文摘Using the extended Blonder-Tinkham-Klapwijk formalism, we investigate the conductance spectra of normal metal/dx2-y2 + idxy mixed wave superconductor graphene junctions. It is found that the conductance spectra vary strongly with the orientation of the gap and the amplitude ratio (Δ1/Δ0) of two components for dx2-y2 + idxy mixed wave. The zero bias conductance is nearly 2 and the conductance peak vanishes in doped graphene for a = 0 and Δ1/Δ0 = 1. The conductance increases with increasing the amplitude ratio of two components for α =π/4 and Δ1/Δ0 -- 1. The ZBCP becomes observable wide with 1 〈 EF/Δ0 〈 100 for α= π/4 and Δ1/Δ0 = 1. This property is different from that in normal metal/dx2-y2 wave superconductor graphene junctions.