The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied dur...Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.展开更多
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
文摘Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.