The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemical method, using zinc chloride and titanium sulphate as the starting materials. The assynthesized products were characterized by X-ray di...The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemical method, using zinc chloride and titanium sulphate as the starting materials. The assynthesized products were characterized by X-ray diffraction, field emission scanning electron microscopy and room temperature photoluminescence measurement. The photocatalytic activity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti^4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti305 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very efficient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.展开更多
文摘The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemical method, using zinc chloride and titanium sulphate as the starting materials. The assynthesized products were characterized by X-ray diffraction, field emission scanning electron microscopy and room temperature photoluminescence measurement. The photocatalytic activity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti^4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti305 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very efficient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.