Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermet...Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermetallic compounds(IMCs) in Sn-58Bi-0.7Zn solder sample were both effectively suppressed. With the addition of 0.7% Zn, ultimate tensile strengths(UTSs) of the Sn-58 Bi solder slabs were respectively increased by 6.05% and 5.50% after reflow soldering and liquid-state aging, and those of the Cu/Sn-58Bi/Cu solder joints were also increased by 21.51% and 29.27%, respectively. The increase in strengthening effect of Cu/Sn-58Bi-x Zn/Cu solder joints could be attributed to the fracture surface which was changed from the Cu/IMC interface to the IMC/solder interface due to the finer Bi grain. Nanoindentation results revealed that the creep behavior of Sn-58Bi-0.7Zn solder was significantly improved compared with that of the eutectic Sn-58 Bi solder after reflow soldering and liquid-state aging.展开更多
The simultaneous integration of heteroatom doping and surface plasmon resonance(SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving ...The simultaneous integration of heteroatom doping and surface plasmon resonance(SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving better solar light conversion and photocatalysis efficiency. For this purpose, we have designed a novel Bi quantum dots(QDs) implanted C-doped BiOCl photocatalyst(C/BOC/B) for NOx removal. The feasibility was firstly evaluated through density functional theory(DFT) calculations methods, which indicates that the enhanced photocatalytic performance could be expected owing to the synergistic effects of doped C heteroatoms and loaded Bi QDs. Then, the C/BOC/B was synthesized via a facile hydrothermal method and exhibited efficient and stable visible light photocatalytic NO removal. The results found that the doped C atoms can serve as electron guides to induce oriented charge transfer from Bi QDs to BiOCl, while the Bi QDs can act as light-capture and electron-donating sites. The reaction pathway and mechanism for NO conversion was unveiled by in situ Fourier-transform infrared spectroscopy combined with DFT calculation. The enhanced adsorption of reactants and intermediates could promote the overall reaction efficiency and selectivity in photocatalytic NO conversion. This work could provide a new perspective on the mechanistic understanding of the synergistic effects toward non-metal doping and SPR effects in semiconductor photocatalysts, and this presented technique could be extended for other semiconductor materials.展开更多
A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructure...A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructures before and after polarization were studied and compared with those of Pb-0.8%Ag anode used in industry.The results show the anodic overpotential decreases with the increase of Bi content in the alloys.When the content of Bi is 1.0%(mass fraction),the anodic overpotential is 40-50 mV lower than that of Pb-0.8%Ag anode.While the corrosion rate decreases and then increases with the increase of Bi content.The Pb-0.8%Ag-0.1%Bi anode has the lowest corrosion rate(0.090 6 mg/(h·cm2).Doping Bi influences the structure of the anodic layer,but does not change the phase.The Pb-0.8%Ag-1.0%Bi anode layer is of a more fine-grained structure compared with Pb-0.8%Ag anode.展开更多
Super-broadband near-infrared(NIR)emission from 1100 nm to 1600 nm is observed in Bi-doped titanate glasses at the excitation of 808 nm laser diode(LD).The effects of Bi content on the optical spectra are investigated...Super-broadband near-infrared(NIR)emission from 1100 nm to 1600 nm is observed in Bi-doped titanate glasses at the excitation of 808 nm laser diode(LD).The effects of Bi content on the optical spectra are investigated.It is also found that the Bi-related emission intensity can be enhanced by Yb3+co-doping at the excitation of 980 nm LD.It should be ascribed to the energy transfer from Yb3+to active Bi ions.The energy transfer processes are studied based on the Inokuti-Hirayama(I-H)model,and the energy transfer of electric dipole-dipole interaction is confirmed to be dominant in Bi/Yb co-doped glasses.展开更多
基金Project(51074112)supported by the National Natural Science Foundation of China
文摘Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermetallic compounds(IMCs) in Sn-58Bi-0.7Zn solder sample were both effectively suppressed. With the addition of 0.7% Zn, ultimate tensile strengths(UTSs) of the Sn-58 Bi solder slabs were respectively increased by 6.05% and 5.50% after reflow soldering and liquid-state aging, and those of the Cu/Sn-58Bi/Cu solder joints were also increased by 21.51% and 29.27%, respectively. The increase in strengthening effect of Cu/Sn-58Bi-x Zn/Cu solder joints could be attributed to the fracture surface which was changed from the Cu/IMC interface to the IMC/solder interface due to the finer Bi grain. Nanoindentation results revealed that the creep behavior of Sn-58Bi-0.7Zn solder was significantly improved compared with that of the eutectic Sn-58 Bi solder after reflow soldering and liquid-state aging.
文摘The simultaneous integration of heteroatom doping and surface plasmon resonance(SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving better solar light conversion and photocatalysis efficiency. For this purpose, we have designed a novel Bi quantum dots(QDs) implanted C-doped BiOCl photocatalyst(C/BOC/B) for NOx removal. The feasibility was firstly evaluated through density functional theory(DFT) calculations methods, which indicates that the enhanced photocatalytic performance could be expected owing to the synergistic effects of doped C heteroatoms and loaded Bi QDs. Then, the C/BOC/B was synthesized via a facile hydrothermal method and exhibited efficient and stable visible light photocatalytic NO removal. The results found that the doped C atoms can serve as electron guides to induce oriented charge transfer from Bi QDs to BiOCl, while the Bi QDs can act as light-capture and electron-donating sites. The reaction pathway and mechanism for NO conversion was unveiled by in situ Fourier-transform infrared spectroscopy combined with DFT calculation. The enhanced adsorption of reactants and intermediates could promote the overall reaction efficiency and selectivity in photocatalytic NO conversion. This work could provide a new perspective on the mechanistic understanding of the synergistic effects toward non-metal doping and SPR effects in semiconductor photocatalysts, and this presented technique could be extended for other semiconductor materials.
基金Project(2007SK2009)supported by the Science and Technology Research Project of Hunan Province,China
文摘A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructures before and after polarization were studied and compared with those of Pb-0.8%Ag anode used in industry.The results show the anodic overpotential decreases with the increase of Bi content in the alloys.When the content of Bi is 1.0%(mass fraction),the anodic overpotential is 40-50 mV lower than that of Pb-0.8%Ag anode.While the corrosion rate decreases and then increases with the increase of Bi content.The Pb-0.8%Ag-0.1%Bi anode has the lowest corrosion rate(0.090 6 mg/(h·cm2).Doping Bi influences the structure of the anodic layer,but does not change the phase.The Pb-0.8%Ag-1.0%Bi anode layer is of a more fine-grained structure compared with Pb-0.8%Ag anode.
基金supported by the National Natural Science Foundation of China(Nos.51272109and50972061)the Natural Science Foundation of Zhejiang Province(Nos.R4100364and Z4110072)+1 种基金the Natural Science Foundation of Ningbo City in Zhejiang Province(No.2012A610115)K.C.Wong Magna Fund in Ningbo University
文摘Super-broadband near-infrared(NIR)emission from 1100 nm to 1600 nm is observed in Bi-doped titanate glasses at the excitation of 808 nm laser diode(LD).The effects of Bi content on the optical spectra are investigated.It is also found that the Bi-related emission intensity can be enhanced by Yb3+co-doping at the excitation of 980 nm LD.It should be ascribed to the energy transfer from Yb3+to active Bi ions.The energy transfer processes are studied based on the Inokuti-Hirayama(I-H)model,and the energy transfer of electric dipole-dipole interaction is confirmed to be dominant in Bi/Yb co-doped glasses.