Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ...Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.展开更多
In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2...In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2O3 pigment presents both a high near-infrared reflectance and excellent yellowish-green color. Meanwhile, titanium was doped to improve the NIR reflectance and strengthen the color. The color of the designed pigments was brighter, and most importantly, the NIR reflectance increased from 84.04% to 91.25% with increasing Ti content from 0 to 0.006% (mole fraction). However, excessive doping of Ti4+ for Cr3+ in Cr2O3 (x(Ti)≥0.008%) decreased the NIR reflectance. One possible reason is that the conductivity type of the Cr2?xTixO3+δ changed from p-type conduction to n-type conduction with increasing Ti content, accompanied by the change of the electrical resistivity and the NIR reflectance. The prepared yellowish-green Cr2O3 pigments have a great potential for extensive applications in construction and military.展开更多
Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fl...Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.展开更多
基金Project (50905178) supported by the National Natural Science Foundation of ChinaProject (2011CB706603) supported by the National Basic Research Program of China
文摘Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.
基金Project(11204304)supported by the National Natural Science Foundation of ChinaProject(2013CB632600)supported by the National Basic Research Program of ChinaProject(2011AA060702)supported by the National High-tech Research and Development Program of China
文摘In order to reduce greenhouse gas emission and urban heat island mitigation, pure and titanium(Ti)-doped Cr2O3 cool pigments were prepared via the thermal decomposition of CrOOH. The result reveals that the pure Cr2O3 pigment presents both a high near-infrared reflectance and excellent yellowish-green color. Meanwhile, titanium was doped to improve the NIR reflectance and strengthen the color. The color of the designed pigments was brighter, and most importantly, the NIR reflectance increased from 84.04% to 91.25% with increasing Ti content from 0 to 0.006% (mole fraction). However, excessive doping of Ti4+ for Cr3+ in Cr2O3 (x(Ti)≥0.008%) decreased the NIR reflectance. One possible reason is that the conductivity type of the Cr2?xTixO3+δ changed from p-type conduction to n-type conduction with increasing Ti content, accompanied by the change of the electrical resistivity and the NIR reflectance. The prepared yellowish-green Cr2O3 pigments have a great potential for extensive applications in construction and military.
基金Project(Qian Jiao He KY Zi [2021]257) supported provided by the Natural Science Research Project of Education Department of Guizhou Province,ChinaProject(GZSQCC2019003) supported by the High-level Innovative Talent Cultivation Project of Guizhou Province,ChinaProjects(GZLGXM-01,GZLGXM-08) supported by the Academic New Seedling Cultivation and Innovation Exploration Project of Guizhou Institute of Technology,China。
文摘Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.