With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS...With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.展开更多
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p...The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.展开更多
Development of inhomogeneous deformation is an interest matter in material engineering. Synchrotron radiation tomography provides 3D distribution map of local strain in polycrystalline aluminum alloy by tracking micro...Development of inhomogeneous deformation is an interest matter in material engineering. Synchrotron radiation tomography provides 3D distribution map of local strain in polycrystalline aluminum alloy by tracking microstructural features. To perform further deep analysis on development of inhomogeneous deformation, crystallographic grain orientation is necessary. Three-dimensional X-ray diffraction technique was developed. A new crystallographic orientation measurement method was described in 3D space, utilizing grain boundary tracking (GBT) information.展开更多
Reinforcement of TPNR (thermoplastic natural rubber) with cotton fibre spun was prepared by using hot compression moulding. The TPNR was prepared by mixing NR (natural rubber) with PE (polyethylene) using 2-roll...Reinforcement of TPNR (thermoplastic natural rubber) with cotton fibre spun was prepared by using hot compression moulding. The TPNR was prepared by mixing NR (natural rubber) with PE (polyethylene) using 2-roll mills before compressed on cotton fibre spun and vulcanized at 150℃. The mechanical properties and morphology of the membrane were investigated using DMTA (dynamic mechanical thermal analyzer) and SEM (scanning electron microscopy), respectively. The membrane strength was increased from 10 MPa to 18 MPa after reinforced with cotton fibre spun as well as the increasing of dielectric constant. The membrane was immersed in xylene to remove PE phase before characterization of membrane properties.展开更多
In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were ta...In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping(maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction(fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping(it is not pseudotachylite), which could be used as an index of paleo-seismic events.展开更多
基金Project (192450/I30) supported by the Norwegian Research Council under the Strategic University Program
文摘With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
文摘The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.
文摘Development of inhomogeneous deformation is an interest matter in material engineering. Synchrotron radiation tomography provides 3D distribution map of local strain in polycrystalline aluminum alloy by tracking microstructural features. To perform further deep analysis on development of inhomogeneous deformation, crystallographic grain orientation is necessary. Three-dimensional X-ray diffraction technique was developed. A new crystallographic orientation measurement method was described in 3D space, utilizing grain boundary tracking (GBT) information.
文摘Reinforcement of TPNR (thermoplastic natural rubber) with cotton fibre spun was prepared by using hot compression moulding. The TPNR was prepared by mixing NR (natural rubber) with PE (polyethylene) using 2-roll mills before compressed on cotton fibre spun and vulcanized at 150℃. The mechanical properties and morphology of the membrane were investigated using DMTA (dynamic mechanical thermal analyzer) and SEM (scanning electron microscopy), respectively. The membrane strength was increased from 10 MPa to 18 MPa after reinforced with cotton fibre spun as well as the increasing of dielectric constant. The membrane was immersed in xylene to remove PE phase before characterization of membrane properties.
基金supported by National Natural Science Foundation of China (Grant No. 41172193)Basic Scientific Fund of the Institute of Geology, China Earthquake Administration (Grant No. IGCEA-1107)
文摘In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping(maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction(fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping(it is not pseudotachylite), which could be used as an index of paleo-seismic events.