In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP...In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.展开更多
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ...The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.展开更多
The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal ...The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal has so far remained elusive. Here, we demonstrate that the highly defective structure of reduced graphene oxide sheets assembled into free-standing, paper-like films can be fully repaired by means of high temperature annealing (graphitization). Characterization of the films by X-ray photoelectron and Raman spectroscopy, X-ray diffraction and scanning tunneling microscopy indicated that the main stages in the transformation of the films were (i) complete removal of oxygen functional groups and generation of atomic vacancies (up to 1,500 ~C), and (ii) vacancy annihilation and coalescence of adjacent overlapping sheets to yield continuous polycrystalline layers (1,800-2,700 ~C) similar to those of highly oriented graphites. The prevailing type of defect in the polycrystalline layers were the grain boundaries separating neighboring domains, which were typically a few hundred nanometers in lateral size, exhibited long-range graphitic order and were virtually free of even atomic-sized defects. The electrical conductivity of the annealed films was as high as 577,000 S-m-1, which is by far the largest value reported to date for any material derived from graphene oxide, and strategies for further improvement without the need to resort to higher annealing temperatures are suggested. Overall, this work opens the prospect of truly achieving a complete restoration of the carbon lattice in graphene oxide materials.展开更多
文摘In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.
基金the financial support from National Natural Science Foundation of China(project No.50975282)Chongqing Science Foundation for Outstanding Youth(project No. CSTC2008,BA4037)
文摘The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.
文摘The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal has so far remained elusive. Here, we demonstrate that the highly defective structure of reduced graphene oxide sheets assembled into free-standing, paper-like films can be fully repaired by means of high temperature annealing (graphitization). Characterization of the films by X-ray photoelectron and Raman spectroscopy, X-ray diffraction and scanning tunneling microscopy indicated that the main stages in the transformation of the films were (i) complete removal of oxygen functional groups and generation of atomic vacancies (up to 1,500 ~C), and (ii) vacancy annihilation and coalescence of adjacent overlapping sheets to yield continuous polycrystalline layers (1,800-2,700 ~C) similar to those of highly oriented graphites. The prevailing type of defect in the polycrystalline layers were the grain boundaries separating neighboring domains, which were typically a few hundred nanometers in lateral size, exhibited long-range graphitic order and were virtually free of even atomic-sized defects. The electrical conductivity of the annealed films was as high as 577,000 S-m-1, which is by far the largest value reported to date for any material derived from graphene oxide, and strategies for further improvement without the need to resort to higher annealing temperatures are suggested. Overall, this work opens the prospect of truly achieving a complete restoration of the carbon lattice in graphene oxide materials.