不完备数据是造成信息系统不确定的主要原因之一,对数据挖掘、知识发现等造成了困难.本文提出一种基于最小描述长度原则的不完备数据处理方法,实例证明这种方法是有效的.Rose工具的规则提取结果证明此方法在规则的集中性和支持度方面...不完备数据是造成信息系统不确定的主要原因之一,对数据挖掘、知识发现等造成了困难.本文提出一种基于最小描述长度原则的不完备数据处理方法,实例证明这种方法是有效的.Rose工具的规则提取结果证明此方法在规则的集中性和支持度方面优于粗糙集辨识矩阵方法和Conditioned mean completer方法.展开更多
针对盲源分离算法应用中的源数估计问题,提出了一种结合盖尔圆定理(Geschgorin Disk Estimator,GDE)和最小描述长度准则(Minimum Description Length,MDL)的GDE-MDL源数估计方法。GDE-MDL方法集合了盖尔圆定理适用于空间色噪声的优点和...针对盲源分离算法应用中的源数估计问题,提出了一种结合盖尔圆定理(Geschgorin Disk Estimator,GDE)和最小描述长度准则(Minimum Description Length,MDL)的GDE-MDL源数估计方法。GDE-MDL方法集合了盖尔圆定理适用于空间色噪声的优点和MDL准则一致性估计的优点。该方法通过对观测信号协方差矩阵进行酉变换来抑制噪声,可以提高似然函数的灵敏度和信源数目的估计精度,更好的处理低信噪比和空间色噪声条件下的源数估计问题。仿真结果表明,GDE-MDL方法稳定性较好,适应性强,在白噪声和空间色噪声的情况下均可以较好的实现信源数目的估计。展开更多
文摘不完备数据是造成信息系统不确定的主要原因之一,对数据挖掘、知识发现等造成了困难.本文提出一种基于最小描述长度原则的不完备数据处理方法,实例证明这种方法是有效的.Rose工具的规则提取结果证明此方法在规则的集中性和支持度方面优于粗糙集辨识矩阵方法和Conditioned mean completer方法.
文摘针对盲源分离算法应用中的源数估计问题,提出了一种结合盖尔圆定理(Geschgorin Disk Estimator,GDE)和最小描述长度准则(Minimum Description Length,MDL)的GDE-MDL源数估计方法。GDE-MDL方法集合了盖尔圆定理适用于空间色噪声的优点和MDL准则一致性估计的优点。该方法通过对观测信号协方差矩阵进行酉变换来抑制噪声,可以提高似然函数的灵敏度和信源数目的估计精度,更好的处理低信噪比和空间色噪声条件下的源数估计问题。仿真结果表明,GDE-MDL方法稳定性较好,适应性强,在白噪声和空间色噪声的情况下均可以较好的实现信源数目的估计。