This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and propo...This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.展开更多
Using wavelets, the vibration signal of a certain mine hoist gear box was analyzed. By multiple comparison analysis, the rational wavelet basis function was determined. Fault characteristic frequencies of hoist gear b...Using wavelets, the vibration signal of a certain mine hoist gear box was analyzed. By multiple comparison analysis, the rational wavelet basis function was determined. Fault characteristic frequencies of hoist gear box were identified. The research indicates that the hoist's fault information is non-stationary, and non-stationary signal is clearly extracted by using db20 wavelet as basis function. The db20 wavelet is the proper wavelet base for vibration signal analysis of the hoist gear box.展开更多
文摘This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.
文摘Using wavelets, the vibration signal of a certain mine hoist gear box was analyzed. By multiple comparison analysis, the rational wavelet basis function was determined. Fault characteristic frequencies of hoist gear box were identified. The research indicates that the hoist's fault information is non-stationary, and non-stationary signal is clearly extracted by using db20 wavelet as basis function. The db20 wavelet is the proper wavelet base for vibration signal analysis of the hoist gear box.