Based on the characteristics of the lignite sample, effects of assistant anthraquinone (AQ) on extraction yield of humic substances (HS) and the action mechanisms of AQ in alkaline condition were studied by Fouvie...Based on the characteristics of the lignite sample, effects of assistant anthraquinone (AQ) on extraction yield of humic substances (HS) and the action mechanisms of AQ in alkaline condition were studied by Fouvier transform infrared (FT-IR) spectroscopy. The results indicate that assistant AQ can not only increase the extraction yield of HS but also reduce the alkali dosage (NaOH) as well as the extraction temperature and extraction time. Under the optimal conditions of alkali dosage of 9%, AQ dosage of 0.75%, extraction temperature of 80 ℃, extraction time of 30 min, stirring speed of 600 r/min and solid-to-liquid ratio of 1:3, the extraction yield of HS reaches 80.08%, which is increased by more than 20% compared with the conventional extraction. FT-IR spectra show that AQ is able to prevent dissolved HS from being destroyed into undissolved substance by alkali and 1-IS obtained in the presence of AQ possesses more groups of COOR and --COOH than that obtained without AQ.展开更多
基金Project(50725416) supported by the National Science Fund for Distinguished Young Scholars in ChinaProject(50804059) supported by the National Natural Science Foundation of China+1 种基金Project(2008BAB32B06) supported by the Key Program in National Science and Technology Pillar Program during the 11th Five-year Plan Period of ChinaProject(200805331080) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Based on the characteristics of the lignite sample, effects of assistant anthraquinone (AQ) on extraction yield of humic substances (HS) and the action mechanisms of AQ in alkaline condition were studied by Fouvier transform infrared (FT-IR) spectroscopy. The results indicate that assistant AQ can not only increase the extraction yield of HS but also reduce the alkali dosage (NaOH) as well as the extraction temperature and extraction time. Under the optimal conditions of alkali dosage of 9%, AQ dosage of 0.75%, extraction temperature of 80 ℃, extraction time of 30 min, stirring speed of 600 r/min and solid-to-liquid ratio of 1:3, the extraction yield of HS reaches 80.08%, which is increased by more than 20% compared with the conventional extraction. FT-IR spectra show that AQ is able to prevent dissolved HS from being destroyed into undissolved substance by alkali and 1-IS obtained in the presence of AQ possesses more groups of COOR and --COOH than that obtained without AQ.