Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capaci...Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.展开更多
Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the met...Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.展开更多
Coal-tar pitch(CP)is a promising carbon raw material for producing needle coke,carbon fiber etc.During processing,the H/C ratio,ash content,and quinoline insoluble(QI)in the CP are the key factors that influence the m...Coal-tar pitch(CP)is a promising carbon raw material for producing needle coke,carbon fiber etc.During processing,the H/C ratio,ash content,and quinoline insoluble(QI)in the CP are the key factors that influence the material preparation.In this study,NMP was selected to extract CP first;then[BMIM]Cl/NMP mixed solvent was used;and finally a series of ionic liquids(ILs)mixtures with NMP were developed for the extraction of CP to obtain the refined pitch.The extracts were analyzed via elemental analysis,TGA,FT-IR,and 13C-NMR.Results indicate that different NMP/IL mass ratios or different kinds of ILs have impact on the extraction yield.The relationship of the hydrogen to carbon(H/C)ratio changed with different solvents and QI extracts were obtained.Results showed that the H/C ratios changed little between NMP extracts and could be adjusted by changing the NMP/ILs mass ratio or using different ILs.The extracts are suitable for preparation mesophase pitch because of no ash content,low QI,and appropriate H/C ratios.As a result,NMP can be used to refine pitch.In addition,[BMIM]Cl is good mixed with NMP for CP extraction,because it can obtain a relatively high yield under the same extraction conditions.展开更多
文摘Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.
文摘Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.
基金supported by the National Basic Research Program of China(2012CB214905)the National Natural Science Foundation of China(21076113)
文摘Coal-tar pitch(CP)is a promising carbon raw material for producing needle coke,carbon fiber etc.During processing,the H/C ratio,ash content,and quinoline insoluble(QI)in the CP are the key factors that influence the material preparation.In this study,NMP was selected to extract CP first;then[BMIM]Cl/NMP mixed solvent was used;and finally a series of ionic liquids(ILs)mixtures with NMP were developed for the extraction of CP to obtain the refined pitch.The extracts were analyzed via elemental analysis,TGA,FT-IR,and 13C-NMR.Results indicate that different NMP/IL mass ratios or different kinds of ILs have impact on the extraction yield.The relationship of the hydrogen to carbon(H/C)ratio changed with different solvents and QI extracts were obtained.Results showed that the H/C ratios changed little between NMP extracts and could be adjusted by changing the NMP/ILs mass ratio or using different ILs.The extracts are suitable for preparation mesophase pitch because of no ash content,low QI,and appropriate H/C ratios.As a result,NMP can be used to refine pitch.In addition,[BMIM]Cl is good mixed with NMP for CP extraction,because it can obtain a relatively high yield under the same extraction conditions.