期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
提高石墨精矿品位及保护石墨大鳞片的工艺实践 被引量:1
1
作者 潘嘉芬 《中国矿业》 北大核心 2002年第4期26-28,共3页
本文着重讨论了石墨行业中 ,再磨、分级作业对大鳞片的保护及产品质量的影响 ,提出了低电耗 ,生产高质量并保护大鳞片的工艺流程及与之相适应的设备。
关键词 石墨 再磨设备 分级设备 工艺流程 损失率 提碳量
下载PDF
Water-Extractable Carbon Pools and Microbial Biomass Carbon in Sodic Water-Irrigated Soils Amended with Gypsum and Organic Manures 被引量:1
2
作者 O.P.CHOUDHARY J.K.GILL BIJAY-SINGH 《Pedosphere》 SCIE CAS CSCD 2013年第1期88-97,共10页
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C ... Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC. 展开更多
关键词 cold water exchangeable sodium percentage hot water organic carbon YIELD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部