Shoulder lines are the most important landform demarcations for geographical analysis,soil erosion modeling and land use planning in the Loess Plateau area of China.This paper proposes an automatic,effective and accur...Shoulder lines are the most important landform demarcations for geographical analysis,soil erosion modeling and land use planning in the Loess Plateau area of China.This paper proposes an automatic,effective and accurate method of determining loess shoulder line from DEMs by integrating a hydrological D8 algorithm and a snake model.The watershed boundary line is adopted as the initial contour which evolves to identify the exact position of loess shoulder-line by the guidance of an external force of snake model from DEMs.Experiments show that the method overcomes the difficulties in both threshold selection for edge detection and the disconnecting issues in former extraction approaches.The accuracy evaluation of shoulder-line maps from the two test sites of the loess plateau area show obvious improvements in the extraction.The average contour matching distance of the new method is 12.0 m on 5 m resolution DEM,and shows improvement in the accuracy and continuity.The comparisons of accuracy evaluations of the two test sites show that the snake model method performs better in the loess plain area than in the area with high gully density.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 40930531, 41001294, 41301422)the Open Project Foundation of State Key Laboratory of Resources and Environmental Information System in China (Grant No. 2010KF0002SA)
文摘Shoulder lines are the most important landform demarcations for geographical analysis,soil erosion modeling and land use planning in the Loess Plateau area of China.This paper proposes an automatic,effective and accurate method of determining loess shoulder line from DEMs by integrating a hydrological D8 algorithm and a snake model.The watershed boundary line is adopted as the initial contour which evolves to identify the exact position of loess shoulder-line by the guidance of an external force of snake model from DEMs.Experiments show that the method overcomes the difficulties in both threshold selection for edge detection and the disconnecting issues in former extraction approaches.The accuracy evaluation of shoulder-line maps from the two test sites of the loess plateau area show obvious improvements in the extraction.The average contour matching distance of the new method is 12.0 m on 5 m resolution DEM,and shows improvement in the accuracy and continuity.The comparisons of accuracy evaluations of the two test sites show that the snake model method performs better in the loess plain area than in the area with high gully density.