Three T-DNA insertional embryonic lethal mutants from NASC (The Nottingham Arabidopsis Stock Center)were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion. ...Three T-DNA insertional embryonic lethal mutants from NASC (The Nottingham Arabidopsis Stock Center)were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion. The N4081 mutant has a segregation ratio of 1:3.04in average and one T-DNA insertion site according to our assay It was therefore chosen for further analysis. To isolate the joint fragment of T-DNA and plan DNA, the plasmid rescue technique waJs used. pEL-7, one of plasmids from left border of T-DNA, which contained pBR322 was selected from ampicillin plate. The T-DNA fragment of pEL-7 was checked by restriction enzyme analysis and Southern Blot. Restriction analysis confirmed the presence of known sites of EcoRI, PstI and PvuII on it.For confirming the presence of flanking plant DNA in this plasmid, pEL-7 DNA was labeled and hybridized with wild type and mutant plant DNA. The Southern Blot indicated the hybridization band in both of them. Furthermore, the junction of T-DNA/plant DNA was subcloned into bluescript SK+ and sequenced by Applied Biosystem 373A Sequencer. The results showed the 822 bp fragment contained a 274 bp sequence, which is 99.6%homolog (273bp/274 bp) to Ti plasmid pTi 15955 DNA.Ten bp of left 25 bp border repeat were also found in the juction of T-DNA and Plant DNA.Taken together, pEL-7 should contain a joint fragment of T-DNA and flanking plant DNA. This plasmid DNA could be used for the isolation of plant gene, which will be helpful to elucidate the relationship between gene function and plant embryo development.展开更多
AIM: To investigate the effects of mutations in domain Ⅲ of the hepatitis C virus (HCV) internal ribosome entry sequences (IRES) on the response of chronic HCV genotype 4a patients to interferon therapy.METHODS...AIM: To investigate the effects of mutations in domain Ⅲ of the hepatitis C virus (HCV) internal ribosome entry sequences (IRES) on the response of chronic HCV genotype 4a patients to interferon therapy.METHODS: HCV RNA was extracted from 19 chronic HCV 4a patients receiving interferon/ribavirin therapy who showed dramatic differences in their response to combination therapy after initial viral clearance. IRES domain Ⅲ was cloned and 15 clones for each patient were sequenced. The obtained sequences were aligned with genotype 4a prototype using the ClustaIW program and mutations scored. Prediction of stem-loop secondary structure and thermodynamic stability of the major quasispecies in each patient was performed using the MFOLD 3.2 program with Turner energies and selected constraints on base pairing.RESULTS: Analysis of RNA secondary structure revealed that insertions in domain Ⅲ altered WatsonCrick base pairing of stems and reduced molecular stability of RNA, which may ultimately reduce binding affinity to ribosomal proteins. Insertion mutations in domain - were statistically more prevalent in sustained viral response patients (SVR, n = 14) as compared to breakthrough (BT, n = 5) patients.CONCLUSION: The influence of mutations within domain Ⅲ on the response of HCV patients to combination therapy depends primarily on the position, but not the frequency, of these mutations within IRES domain Ⅲ.展开更多
Decorsin, an antagonist of integrin glycoprotein IIb/IIIa, contains Arg-Gly-Asp (RGD) sequence and three disulfide bridges. The function of RGD sequence has already been well defined, but the roles of conserved disu...Decorsin, an antagonist of integrin glycoprotein IIb/IIIa, contains Arg-Gly-Asp (RGD) sequence and three disulfide bridges. The function of RGD sequence has already been well defined, but the roles of conserved disulfide bonds in antihemostatic proteins still remain unclear. Herein we use the fusion expression and characterization of mutant decorsin to study the func- tions of disulfide bonds in protein structure, stability and biological activity. The purified protein shows an apparent inhibition of activity to platelet aggregation induced by ADP with IC50 of 500 nM. The removal of cys7-cysl5 (from cysteine to serine) at the N-terminal causes a thirty-fold decrease of the inhibition activity with IC50 of 15 ~tM, whereas the mutation of cys22-cys38 at the C-terminal completely impairs the biological activity of decorsin. The overall secondary and tertiary struc- tures of decorsin are disrupted inevitably without disulfide bonds. Using a domain insertion mutation, the retaining of RGD loop and the adjacent disulfide bond produces a week antihemostatic activity of decorsin. This reveals that the overall structure of decorsin stabilized by the three conserved disulfide bridges is cooperative for antihemostatic function. Our study on the ef- fect of disulfide bonds together with RGD-sequence on the protein function is helpful for structure-based drug design of an- tithrombotic research.展开更多
文摘Three T-DNA insertional embryonic lethal mutants from NASC (The Nottingham Arabidopsis Stock Center)were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion. The N4081 mutant has a segregation ratio of 1:3.04in average and one T-DNA insertion site according to our assay It was therefore chosen for further analysis. To isolate the joint fragment of T-DNA and plan DNA, the plasmid rescue technique waJs used. pEL-7, one of plasmids from left border of T-DNA, which contained pBR322 was selected from ampicillin plate. The T-DNA fragment of pEL-7 was checked by restriction enzyme analysis and Southern Blot. Restriction analysis confirmed the presence of known sites of EcoRI, PstI and PvuII on it.For confirming the presence of flanking plant DNA in this plasmid, pEL-7 DNA was labeled and hybridized with wild type and mutant plant DNA. The Southern Blot indicated the hybridization band in both of them. Furthermore, the junction of T-DNA/plant DNA was subcloned into bluescript SK+ and sequenced by Applied Biosystem 373A Sequencer. The results showed the 822 bp fragment contained a 274 bp sequence, which is 99.6%homolog (273bp/274 bp) to Ti plasmid pTi 15955 DNA.Ten bp of left 25 bp border repeat were also found in the juction of T-DNA and Plant DNA.Taken together, pEL-7 should contain a joint fragment of T-DNA and flanking plant DNA. This plasmid DNA could be used for the isolation of plant gene, which will be helpful to elucidate the relationship between gene function and plant embryo development.
基金Supported by A grant from National Research Center to M.Awady and grant from Yousef Jameel Science&Technology Research Center(YJ-STRC)at the American University in Cairo to H.Azzazy
文摘AIM: To investigate the effects of mutations in domain Ⅲ of the hepatitis C virus (HCV) internal ribosome entry sequences (IRES) on the response of chronic HCV genotype 4a patients to interferon therapy.METHODS: HCV RNA was extracted from 19 chronic HCV 4a patients receiving interferon/ribavirin therapy who showed dramatic differences in their response to combination therapy after initial viral clearance. IRES domain Ⅲ was cloned and 15 clones for each patient were sequenced. The obtained sequences were aligned with genotype 4a prototype using the ClustaIW program and mutations scored. Prediction of stem-loop secondary structure and thermodynamic stability of the major quasispecies in each patient was performed using the MFOLD 3.2 program with Turner energies and selected constraints on base pairing.RESULTS: Analysis of RNA secondary structure revealed that insertions in domain Ⅲ altered WatsonCrick base pairing of stems and reduced molecular stability of RNA, which may ultimately reduce binding affinity to ribosomal proteins. Insertion mutations in domain - were statistically more prevalent in sustained viral response patients (SVR, n = 14) as compared to breakthrough (BT, n = 5) patients.CONCLUSION: The influence of mutations within domain Ⅲ on the response of HCV patients to combination therapy depends primarily on the position, but not the frequency, of these mutations within IRES domain Ⅲ.
基金supported by the National Natural Science Foundation of China(91127026,11074115 and 61101056)the Open Project of State Key Laboratory of Bioelectronics of Southeast University(2011E14)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Decorsin, an antagonist of integrin glycoprotein IIb/IIIa, contains Arg-Gly-Asp (RGD) sequence and three disulfide bridges. The function of RGD sequence has already been well defined, but the roles of conserved disulfide bonds in antihemostatic proteins still remain unclear. Herein we use the fusion expression and characterization of mutant decorsin to study the func- tions of disulfide bonds in protein structure, stability and biological activity. The purified protein shows an apparent inhibition of activity to platelet aggregation induced by ADP with IC50 of 500 nM. The removal of cys7-cysl5 (from cysteine to serine) at the N-terminal causes a thirty-fold decrease of the inhibition activity with IC50 of 15 ~tM, whereas the mutation of cys22-cys38 at the C-terminal completely impairs the biological activity of decorsin. The overall secondary and tertiary struc- tures of decorsin are disrupted inevitably without disulfide bonds. Using a domain insertion mutation, the retaining of RGD loop and the adjacent disulfide bond produces a week antihemostatic activity of decorsin. This reveals that the overall structure of decorsin stabilized by the three conserved disulfide bridges is cooperative for antihemostatic function. Our study on the ef- fect of disulfide bonds together with RGD-sequence on the protein function is helpful for structure-based drug design of an- tithrombotic research.