Let G be a graph, the square graph G 2 of G is a graph satisfying V(G 2)=V(G) and E(G 2)=E(G)∪{uv: dist G(u, v)=2} . In this paper, we use the technique of vertex insertion on l -connected ( l=k or k...Let G be a graph, the square graph G 2 of G is a graph satisfying V(G 2)=V(G) and E(G 2)=E(G)∪{uv: dist G(u, v)=2} . In this paper, we use the technique of vertex insertion on l -connected ( l=k or k+1, k≥2 ) claw-free graphs to provide a unified proof for G to be Hamiltonian, 1 -Hamiltonian or Hamiltonian-connected. The sufficient conditions are expressed by the inequality concerning ∑ k i=0N(Y i) and n(Y) in G for each independent set Y={y 0, y 1, …, y k} of the square graph of G , where b ( 0<b<k+1 ) is an integer, Y i={y i, y i-1, …, y i-(b-1)}Y for i∈{0, 1, …, k} , where subscriptions of y j s will be taken modulo k+1 , and n(Y)={v∈ V(G): dist (v, Y)≤ 2} .展开更多
Let G be a graph, an independent set Y in G is called an essential independent set (or essential set for simplicity), if there is {y 1,y 2} Y such that dist (y 1,y 2)=2. In this paper, we wi...Let G be a graph, an independent set Y in G is called an essential independent set (or essential set for simplicity), if there is {y 1,y 2} Y such that dist (y 1,y 2)=2. In this paper, we will use the technique of the vertex insertion on l connected ( l=k or k+1,k≥2 ) claw free graphs to provide a unified proof for G to be hamiltonian or 1 hamiltonian, the sufficient conditions are expressed by the inequality concerning ∑ki=0N(Y i) and n(Y) for each essential set Y={y 0,y 1,...,y k} of G , where Y i={y i,y i-1 ,...,y i-(b-1) }Y for i∈{0,1,...,k} (the subscriptions of y j ’s will be taken modulo k+1 ), b ( 0【b【k+1 ) is an integer, and n(Y)={v∈V(G): dist (v,Y)≤2 }.展开更多
文摘Let G be a graph, the square graph G 2 of G is a graph satisfying V(G 2)=V(G) and E(G 2)=E(G)∪{uv: dist G(u, v)=2} . In this paper, we use the technique of vertex insertion on l -connected ( l=k or k+1, k≥2 ) claw-free graphs to provide a unified proof for G to be Hamiltonian, 1 -Hamiltonian or Hamiltonian-connected. The sufficient conditions are expressed by the inequality concerning ∑ k i=0N(Y i) and n(Y) in G for each independent set Y={y 0, y 1, …, y k} of the square graph of G , where b ( 0<b<k+1 ) is an integer, Y i={y i, y i-1, …, y i-(b-1)}Y for i∈{0, 1, …, k} , where subscriptions of y j s will be taken modulo k+1 , and n(Y)={v∈ V(G): dist (v, Y)≤ 2} .
文摘Let G be a graph, an independent set Y in G is called an essential independent set (or essential set for simplicity), if there is {y 1,y 2} Y such that dist (y 1,y 2)=2. In this paper, we will use the technique of the vertex insertion on l connected ( l=k or k+1,k≥2 ) claw free graphs to provide a unified proof for G to be hamiltonian or 1 hamiltonian, the sufficient conditions are expressed by the inequality concerning ∑ki=0N(Y i) and n(Y) for each essential set Y={y 0,y 1,...,y k} of G , where Y i={y i,y i-1 ,...,y i-(b-1) }Y for i∈{0,1,...,k} (the subscriptions of y j ’s will be taken modulo k+1 ), b ( 0【b【k+1 ) is an integer, and n(Y)={v∈V(G): dist (v,Y)≤2 }.