CNC machining plays an important role in mechanical manufacturing.A key issue is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints of the CNC machine.F...CNC machining plays an important role in mechanical manufacturing.A key issue is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints of the CNC machine.For the consecutive micro-line segments interpolation,the velocities at the junction of two segments are the bottlenecks for the machining efficiency.This paper proposes a multi-period turning method to improve the feedrate at the junctions using the linear acceleration and deceleration mode,which utilizes the maximal acceleration capabilities of the NC machine while satisfying the machining precision.A new and more efficient look-ahead method and a feedrate override method are also proposed to boast the global machining speed.The proposed algorithm has been implemented on Blue Sky NC System,and experimented in real material manufacturing.Compared with several existing algorithms,the current algorithm can improve the manufacturing time ranging from 50% to 180%,depending on the machining parameters,and also results in better machining quality.In addition,the algorithm also satisfies the need of real-time interpolation.展开更多
Variable feedrate interpolation algorithms for five-axis parametric toolpath are very promising but still rather limited currently.In this paper,an off-line feedrate scheduling method of dual NURBS curve is presented ...Variable feedrate interpolation algorithms for five-axis parametric toolpath are very promising but still rather limited currently.In this paper,an off-line feedrate scheduling method of dual NURBS curve is presented with geometric and kinematical constraints.For a given dual parametric curve,the feedrates of sampling points are first scheduled sequent with confined feedrate of cutter tip and machine pivot,chord error,normal acceleration and angular feedrate.Then,the feedrate profiles of angular feed acceleration sensitive regions of the path are adjusted using a bi-directional scanning algorithm.After that,a linear programming method is used to adjust the feedrate profiles of linear feed acceleration sensitive regions and control the linear feed acceleration of both cutter tip and machine pivot within preset values.Further,a NURBS curve is used to fit the feedrates of sampling points.Finally,illustrative examples are carried out to validate the feasibility of the proposed feedrate scheduling method.The results show that the proposed method has the ability of effectively controlling the angular feed characters of cutter axis as well as the chord error and linear feed characters of cutter tip and machine pivot,and it has potential to be used in high accuracy and high quality five-axis machining.展开更多
基金supported by the National Key Basic Research Project of China (Grant Nos 2011CB302400)the National Natural Science Foundation of China (Grant Nos 60821002, 10871195, 10925105)+1 种基金Major National S&T Project "Advanced CNC Systems"CAS Project "MM Methods for Advanced CNC Systems"
文摘CNC machining plays an important role in mechanical manufacturing.A key issue is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints of the CNC machine.For the consecutive micro-line segments interpolation,the velocities at the junction of two segments are the bottlenecks for the machining efficiency.This paper proposes a multi-period turning method to improve the feedrate at the junctions using the linear acceleration and deceleration mode,which utilizes the maximal acceleration capabilities of the NC machine while satisfying the machining precision.A new and more efficient look-ahead method and a feedrate override method are also proposed to boast the global machining speed.The proposed algorithm has been implemented on Blue Sky NC System,and experimented in real material manufacturing.Compared with several existing algorithms,the current algorithm can improve the manufacturing time ranging from 50% to 180%,depending on the machining parameters,and also results in better machining quality.In addition,the algorithm also satisfies the need of real-time interpolation.
基金supported by the National Natural Science Foundation of China under Grant Nos.51075054 and 11290143the National Basic Research Program of China under Grant No.2011CB716800
文摘Variable feedrate interpolation algorithms for five-axis parametric toolpath are very promising but still rather limited currently.In this paper,an off-line feedrate scheduling method of dual NURBS curve is presented with geometric and kinematical constraints.For a given dual parametric curve,the feedrates of sampling points are first scheduled sequent with confined feedrate of cutter tip and machine pivot,chord error,normal acceleration and angular feedrate.Then,the feedrate profiles of angular feed acceleration sensitive regions of the path are adjusted using a bi-directional scanning algorithm.After that,a linear programming method is used to adjust the feedrate profiles of linear feed acceleration sensitive regions and control the linear feed acceleration of both cutter tip and machine pivot within preset values.Further,a NURBS curve is used to fit the feedrates of sampling points.Finally,illustrative examples are carried out to validate the feasibility of the proposed feedrate scheduling method.The results show that the proposed method has the ability of effectively controlling the angular feed characters of cutter axis as well as the chord error and linear feed characters of cutter tip and machine pivot,and it has potential to be used in high accuracy and high quality five-axis machining.