To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity,the influence of the discrete element method and response surface meth...To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity,the influence of the discrete element method and response surface method on the uniformity of the aggregate mixing when the interaction between two different factors was analyzed.A mathematical model of the influence of various factors and interactions on the coefficient of variation of the aggregates was established.The matching of each parameter was optimized with the goal of minimizing the coefficient of variation.The results show that when the aggregate particle size is different,the significance of each parameter affecting its mixing uniformity is also different.Moreover,increasing the speed and reducing the axial installation angle of the blade can reduce the coefficient of variation of the three aggregates.To obtain a good mixing uniformity,the mixing-arm phase angle when the drum inclination angle is large should be smaller than the phase angle when the drum inclination angle is small,and the mixing of large particles should not be arranged with a large mixing-arm phase angle.With a blade radial installation angle of 38°,a blade axial installation angle of 35°,a drum inclination angle of 6°,a drum rotation speed of 10 r/min,and a mixing-arm phase angle of 32°,the aggregate as a whole can exhibit the best mixing uniformity.展开更多
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f...Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.展开更多
基金The Natural Science Basic Research Plan in Shaanxi Province(No.2017JM5077)the Fundamental Research Funds for the Central Universities under Grant(No.300102259109).
文摘To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity,the influence of the discrete element method and response surface method on the uniformity of the aggregate mixing when the interaction between two different factors was analyzed.A mathematical model of the influence of various factors and interactions on the coefficient of variation of the aggregates was established.The matching of each parameter was optimized with the goal of minimizing the coefficient of variation.The results show that when the aggregate particle size is different,the significance of each parameter affecting its mixing uniformity is also different.Moreover,increasing the speed and reducing the axial installation angle of the blade can reduce the coefficient of variation of the three aggregates.To obtain a good mixing uniformity,the mixing-arm phase angle when the drum inclination angle is large should be smaller than the phase angle when the drum inclination angle is small,and the mixing of large particles should not be arranged with a large mixing-arm phase angle.With a blade radial installation angle of 38°,a blade axial installation angle of 35°,a drum inclination angle of 6°,a drum rotation speed of 10 r/min,and a mixing-arm phase angle of 32°,the aggregate as a whole can exhibit the best mixing uniformity.
基金Project(2021YFB3400903) supported by the National Key R&D Program of ChinaProject(1053320211480) supported by the Science and Technology Innovation Project of Graduate Students of Central South University,China。
文摘Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.