Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently propose...Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently proposed as a new flooding agent.The solubility of HAPAM is low,which is the bottleneck for further improving the oil recovery through polymer flooding in offshore oilfield.Stirred tanks have been used on offshore platforms to enhance HAPAM dissolving.But there is little literature on the study of HAPAM dissolving characteristics in stirred tanks.In this paper,effects of temperature,salinity,stirring speed,impeller type and stirring method on the dissolution of HAPAM are reported.The experimental results manifest that the dissolving rate of HAPAM increases with temperature and stirring speed,but the viscosity of the polymer solution decreases.There is an optimal range of salinity for polymer dissolving.Combining the operation mode of up-pumping with varying stirring speed,hydrofoil impeller can accelerate the dissolution of HAPAM and maintain a high solution viscosity.展开更多
The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,...The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,the turbulence generated by blade passage includes the periodic components and the random turbulent ones.Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison.The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy.The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained.In the impeller region,the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one.The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared.TRPIV was used to record the sequence of instantaneous velocity in the impeller stream.The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices.The slope of the energy spectrum was approximately-5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank.From the power spectral density(PSD) ,one peak existed evidently,which was located at f0(blade passage frequency) generated by the blade passage.展开更多
Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirre...Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.展开更多
The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupli...The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.展开更多
Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with S...Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.展开更多
The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-trati...The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-tration Cs was varied from 0 to 25%. And the superficial gas velocity Ug was at the range of 0-0.096 m·s-1. A fast and objective method for identifying flooding point NF is developed based on the statistical analysis of the pressure fluctuation signals. It is found, the effect of solid concentration on the flooding point NF depends on the gas velocity. At the lower gas velocity (Ug = 0.010 m·s-1), the solid concentration has only a minor effect. However, it displays a very significant effect on the flooding point NF at the medium and high gas velocity. The flooding point NF linearly increases with the gas velocity Ug, at lower solid concentration (Cs = 0, 10%). When Cs = 20%, the behavior of NF versus Ug becomes more complex. The correlations of the flooding characteristics in the slurry stirred tank are proposed by considering the solid concentration effect.展开更多
Vertical distributions of void fraction in gas-liquid and gas-liquid-solid stirred tanks have been measured in a fully baffled dished base vessel of 0.48 m diameter, using a conductivity probe. The impeller configurat...Vertical distributions of void fraction in gas-liquid and gas-liquid-solid stirred tanks have been measured in a fully baffled dished base vessel of 0.48 m diameter, using a conductivity probe. The impeller configuration (a hollow half elliptical blade dispersing turbine below two up-pumping wide blade hydrofoils, identified as HEDT+2WHu) recommended in previous work has been used in this work. The operating temperatures were 24℃ and 81℃, identified as cold and hot respectively. The effects of superficial gas velocity, agitator speed and the corresponding power input on the local void fraction in two-phase systems are .investigated and discussed. Results show thatth-e increasing of agitator speed or gas flow rate leads to an increase in local-void fraction at the majority of measurement points in both cold and hot systems. However, the unifo,rmity of gas dispersion does not always in crease as the raising of agitator speed and power input. In either cold or hot sparged conditions, the two- and three-phase systems.have similar vertical profiles for void fraction, with maxima in similar locations; however, the void fractions are significantly lower in hot sparging than with cold. In cold operation the presence of particles leads to a lower void fraction at most points, although the local void fractions increase a little with the addition of solid particles at high temperature, in good agreement with the global gas holdup results, and the possible reasons are discussed in this paper. This work can give a better understanding of the differences between cold-gassed and hot-sparged three phase'stirred tanks.展开更多
The gassed power demand and volumetric mass transfer coefficient (kca) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six ty...The gassed power demand and volumetric mass transfer coefficient (kca) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six types of impellers (six-half-elliptical-blade disk turbine (HEDT), four-wide-blade hydrofoil impeller (WH) pumping down (D) and pumping up (U), parabolic-blade disk turbine (PDT), and CBY narrow blade (N) and wide blade (W)) were used to form five combinations identified by PDT + 2CBYN, PDT + 2CBYw, PDT + 2WHD, HEDT + 2WHD and HEDT + 2WHo, respectively. The results show that the relative power demand of HEDT + 2WHu is higher than that of other four impeller combinations under all operating conditions. At low superficial gas velocity (uc), kLa differences among impeller combinations are not obvious. However when UG iS high, PDT + 2WHD shows the best mass transfer performance and HEDT + 2WHu shows the worst mass trans- fer performance under all operating conditions. At high uc and a given power input, the impeller combinations with high agitation speed and big projection cross-sectional area lead to relatively high values of kLa. Based on the experimental data, the regressed correlations of gassed power number with Froude number and gas flow number, and kLa with power consumption and superficial gas velocity are obtained for five different impeller combinations, which could be used as guidance for industrial design.展开更多
Vertical distributions of local void fraction and bubble size in air-water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, ho...Vertical distributions of local void fraction and bubble size in air-water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, holding 0.134 m3 liquid. The impeller combination with a six parabolic blade disk turbine below two down-pumping hy- drofoil propellers, identified as PDT + 2CBY, was used in this study. The effects of the impeller diameter D, rang- ing from 0.30T to 0.40T (corresponding to D/T from 0.30 to 0.40), on the local void fraction and bubble size were investigated by both experimental and CFD simulation methods. At low superficial gas velocity Vs of 0.0077 m· s-1, there is no obvious difference in the local void fraction distribution for all systems with different D/T. However, at high superficial gas velocity, the system with a D/TofO.30 leads to higher local void fraction than systems with other D/T. There is no significant variation in the axial distribution of the Sauter mean bubble size for all the systems with different D/T at the same gas superficial velocity. CFD simulation based on the two-fluid model along with the population balance model (PBM) was used to investigate the effect of the impeller diameter on the gas-liquid flows. The local void fraction predicted by the numerical simulation approach was in reasonable a^reement with the experimental data.展开更多
Towards the objective of improving the gas dispersion performance, the dislocated-blade Rushton impeller was applied to the gas-liquid mixing in a baffled stirred vessel. The flow field, gas hold-up, dissolved oxygen,...Towards the objective of improving the gas dispersion performance, the dislocated-blade Rushton impeller was applied to the gas-liquid mixing in a baffled stirred vessel. The flow field, gas hold-up, dissolved oxygen, power consumption before and after gassing were studied using the computational fluid dynamics (CFD) technique. Dispersion of gas in the liquid was modelled using the Eulerian-Eulerian approach along with the dispersed k-e turbulent model. Rotation of the impeller was simulated with the multiple reference frame method. A modified drag coefficient which includes the effect of turbulence was used to account for the momentum exchange. The predictions were compared with their counterparts of the standard Rushton impeller and were validated with the experimental results. It is concluded that the dislocated-blade Rushton impeller is superior to the standard Rushton impeller in the gas-liquid mixing operation, and the findings obtained here lay the basis of its application in process industries.展开更多
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30...The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.展开更多
文摘Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently proposed as a new flooding agent.The solubility of HAPAM is low,which is the bottleneck for further improving the oil recovery through polymer flooding in offshore oilfield.Stirred tanks have been used on offshore platforms to enhance HAPAM dissolving.But there is little literature on the study of HAPAM dissolving characteristics in stirred tanks.In this paper,effects of temperature,salinity,stirring speed,impeller type and stirring method on the dissolution of HAPAM are reported.The experimental results manifest that the dissolving rate of HAPAM increases with temperature and stirring speed,but the viscosity of the polymer solution decreases.There is an optimal range of salinity for polymer dissolving.Combining the operation mode of up-pumping with varying stirring speed,hydrofoil impeller can accelerate the dissolution of HAPAM and maintain a high solution viscosity.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,the turbulence generated by blade passage includes the periodic components and the random turbulent ones.Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison.The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy.The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained.In the impeller region,the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one.The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared.TRPIV was used to record the sequence of instantaneous velocity in the impeller stream.The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices.The slope of the energy spectrum was approximately-5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank.From the power spectral density(PSD) ,one peak existed evidently,which was located at f0(blade passage frequency) generated by the blade passage.
基金the National Natural Science Foundation of China (No. 20106016 and No. 20236050).
文摘Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.
文摘The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.
文摘Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.
文摘The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-tration Cs was varied from 0 to 25%. And the superficial gas velocity Ug was at the range of 0-0.096 m·s-1. A fast and objective method for identifying flooding point NF is developed based on the statistical analysis of the pressure fluctuation signals. It is found, the effect of solid concentration on the flooding point NF depends on the gas velocity. At the lower gas velocity (Ug = 0.010 m·s-1), the solid concentration has only a minor effect. However, it displays a very significant effect on the flooding point NF at the medium and high gas velocity. The flooding point NF linearly increases with the gas velocity Ug, at lower solid concentration (Cs = 0, 10%). When Cs = 20%, the behavior of NF versus Ug becomes more complex. The correlations of the flooding characteristics in the slurry stirred tank are proposed by considering the solid concentration effect.
基金Supported by the National Natural Science Foundation of China (20576009, 20821004) and the National Basic Research Program of China (2007CB714300). ACKNOWLEDGEMENTS The authors sincerely acknowledge the helpful discussion with Prof John M. Smith [Fluids and Systems Research Centre, School of Engineering (J2), University of Surrey, Guildford, GU2 7XH, UK].
文摘Vertical distributions of void fraction in gas-liquid and gas-liquid-solid stirred tanks have been measured in a fully baffled dished base vessel of 0.48 m diameter, using a conductivity probe. The impeller configuration (a hollow half elliptical blade dispersing turbine below two up-pumping wide blade hydrofoils, identified as HEDT+2WHu) recommended in previous work has been used in this work. The operating temperatures were 24℃ and 81℃, identified as cold and hot respectively. The effects of superficial gas velocity, agitator speed and the corresponding power input on the local void fraction in two-phase systems are .investigated and discussed. Results show thatth-e increasing of agitator speed or gas flow rate leads to an increase in local-void fraction at the majority of measurement points in both cold and hot systems. However, the unifo,rmity of gas dispersion does not always in crease as the raising of agitator speed and power input. In either cold or hot sparged conditions, the two- and three-phase systems.have similar vertical profiles for void fraction, with maxima in similar locations; however, the void fractions are significantly lower in hot sparging than with cold. In cold operation the presence of particles leads to a lower void fraction at most points, although the local void fractions increase a little with the addition of solid particles at high temperature, in good agreement with the global gas holdup results, and the possible reasons are discussed in this paper. This work can give a better understanding of the differences between cold-gassed and hot-sparged three phase'stirred tanks.
基金Supported by the National Natural Science Foundation of China(21206002,21376016)
文摘The gassed power demand and volumetric mass transfer coefficient (kca) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six types of impellers (six-half-elliptical-blade disk turbine (HEDT), four-wide-blade hydrofoil impeller (WH) pumping down (D) and pumping up (U), parabolic-blade disk turbine (PDT), and CBY narrow blade (N) and wide blade (W)) were used to form five combinations identified by PDT + 2CBYN, PDT + 2CBYw, PDT + 2WHD, HEDT + 2WHD and HEDT + 2WHo, respectively. The results show that the relative power demand of HEDT + 2WHu is higher than that of other four impeller combinations under all operating conditions. At low superficial gas velocity (uc), kLa differences among impeller combinations are not obvious. However when UG iS high, PDT + 2WHD shows the best mass transfer performance and HEDT + 2WHu shows the worst mass trans- fer performance under all operating conditions. At high uc and a given power input, the impeller combinations with high agitation speed and big projection cross-sectional area lead to relatively high values of kLa. Based on the experimental data, the regressed correlations of gassed power number with Froude number and gas flow number, and kLa with power consumption and superficial gas velocity are obtained for five different impeller combinations, which could be used as guidance for industrial design.
基金Supported by the National Natural Science Foundation of China(21121064,21206002,21376016)
文摘Vertical distributions of local void fraction and bubble size in air-water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, holding 0.134 m3 liquid. The impeller combination with a six parabolic blade disk turbine below two down-pumping hy- drofoil propellers, identified as PDT + 2CBY, was used in this study. The effects of the impeller diameter D, rang- ing from 0.30T to 0.40T (corresponding to D/T from 0.30 to 0.40), on the local void fraction and bubble size were investigated by both experimental and CFD simulation methods. At low superficial gas velocity Vs of 0.0077 m· s-1, there is no obvious difference in the local void fraction distribution for all systems with different D/T. However, at high superficial gas velocity, the system with a D/TofO.30 leads to higher local void fraction than systems with other D/T. There is no significant variation in the axial distribution of the Sauter mean bubble size for all the systems with different D/T at the same gas superficial velocity. CFD simulation based on the two-fluid model along with the population balance model (PBM) was used to investigate the effect of the impeller diameter on the gas-liquid flows. The local void fraction predicted by the numerical simulation approach was in reasonable a^reement with the experimental data.
基金Supported by the National Natural Science Foundation of China(21306105)
文摘Towards the objective of improving the gas dispersion performance, the dislocated-blade Rushton impeller was applied to the gas-liquid mixing in a baffled stirred vessel. The flow field, gas hold-up, dissolved oxygen, power consumption before and after gassing were studied using the computational fluid dynamics (CFD) technique. Dispersion of gas in the liquid was modelled using the Eulerian-Eulerian approach along with the dispersed k-e turbulent model. Rotation of the impeller was simulated with the multiple reference frame method. A modified drag coefficient which includes the effect of turbulence was used to account for the momentum exchange. The predictions were compared with their counterparts of the standard Rushton impeller and were validated with the experimental results. It is concluded that the dislocated-blade Rushton impeller is superior to the standard Rushton impeller in the gas-liquid mixing operation, and the findings obtained here lay the basis of its application in process industries.
基金Supported by the National Natural Science Foundation of China(21121064,21206002,21376016)
文摘The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.