The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the produc...The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production.展开更多
Based on the large-scale model tests, a simplified dam breach model for homogeneous cohesive dam due to overtopping failure is put forward. The model considers headcut erosion as one of the key homogeneous cohesive da...Based on the large-scale model tests, a simplified dam breach model for homogeneous cohesive dam due to overtopping failure is put forward. The model considers headcut erosion as one of the key homogeneous cohesive dam breaching mechanisms and we calculate the time-averaged headcut migration rate using an energy-based empirical formula. A numerical method is adopted to determine the initial scour position at the downstream slope in terms of the water head and dam height, and the broad-crested weir equation is utilized to simulate the breach flow. The limit equilibrium method is used to analyze the stability of breach slope during the breach process. An iterative method is developed to simulate the coupling process of soil and water at each time step. The calculated results of three dam breach cases testify the reasonability of the model, and the sensitivity studies of soil erodibility show that sensitivity is dependent on each test case's soil conditions. In addition, three typical dam breach models, NWS BREACH, WinDAM B, and HR BREACH, are also chosen to compare with the proposed model. It is found that NWS BREACH may have large errors for cohesive dams, since it uses a noncohesive sediment transport model and does notconsider headcut erosion, WinDAM B and HR BREACH consider headcut erosion as the breaching mechanism and handle well homogeneous cohesive dam overtopping failure, but overall, the proposed model has the best performance.展开更多
The Grain v1 stream cipher is one of the seven finalists in the final e STREAM portfolio. Though many attacks have been published,no recovery attack better than exhaustive key search on full Grain v1 in the single key...The Grain v1 stream cipher is one of the seven finalists in the final e STREAM portfolio. Though many attacks have been published,no recovery attack better than exhaustive key search on full Grain v1 in the single key setting has been found yet. In this paper,new state recovery attacks on Grain v1 utilizing the weak normality order of the employed keystream output function in the cipher are proposed. These attacks have remarkable advantages in the offline time,online time and memory complexities,which are all better than exhaustive key search. The success probability of each new attack is 0.632. The proposed attack primarily depends on the order of weak normality of the employed keystream output function. This shows that the weak normality order should be carefully considered when designing the keystream output functions of Grain-like stream ciphers.展开更多
To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Bloc...To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Block Code (STBC) transmit scheme. A locally optimal selection criterion is proposed at first. Then, the incremental selection approach is applied, which selects one among the residual available users to maximize the minimum user SINR step by step. Simulation results show that the fast algorithm gains over 90% of the diversity benefit achieved by the exhaustive search selection, and that the fast algorithm has much lower computational burden than the exhaustive search one, for the scenario where the number of all the available users is much greater than that of the selected users.展开更多
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project(B504)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China (20100074120010)the Natural Science Foundation of Shanghai City (11ZR1409700)
文摘The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production.
基金Natural Science Foundation of China(Grant No.51379129,51539006,51509164)
文摘Based on the large-scale model tests, a simplified dam breach model for homogeneous cohesive dam due to overtopping failure is put forward. The model considers headcut erosion as one of the key homogeneous cohesive dam breaching mechanisms and we calculate the time-averaged headcut migration rate using an energy-based empirical formula. A numerical method is adopted to determine the initial scour position at the downstream slope in terms of the water head and dam height, and the broad-crested weir equation is utilized to simulate the breach flow. The limit equilibrium method is used to analyze the stability of breach slope during the breach process. An iterative method is developed to simulate the coupling process of soil and water at each time step. The calculated results of three dam breach cases testify the reasonability of the model, and the sensitivity studies of soil erodibility show that sensitivity is dependent on each test case's soil conditions. In addition, three typical dam breach models, NWS BREACH, WinDAM B, and HR BREACH, are also chosen to compare with the proposed model. It is found that NWS BREACH may have large errors for cohesive dams, since it uses a noncohesive sediment transport model and does notconsider headcut erosion, WinDAM B and HR BREACH consider headcut erosion as the breaching mechanism and handle well homogeneous cohesive dam overtopping failure, but overall, the proposed model has the best performance.
基金supported in part by the National Natural Science Foundation of China (Grant No.61202491,61272041,61272488,61402523,61602514)the Science and Technology on Communication Security Laboratory Foundation of China under Grant No.9140C110303140C11051
文摘The Grain v1 stream cipher is one of the seven finalists in the final e STREAM portfolio. Though many attacks have been published,no recovery attack better than exhaustive key search on full Grain v1 in the single key setting has been found yet. In this paper,new state recovery attacks on Grain v1 utilizing the weak normality order of the employed keystream output function in the cipher are proposed. These attacks have remarkable advantages in the offline time,online time and memory complexities,which are all better than exhaustive key search. The success probability of each new attack is 0.632. The proposed attack primarily depends on the order of weak normality of the employed keystream output function. This shows that the weak normality order should be carefully considered when designing the keystream output functions of Grain-like stream ciphers.
文摘To avoid the exhaustive search, we propose a fast user selection algorithm for Signal-to-Interference-plus-Noise-Ratio (SINR)-based multiuser Multiple-Input Multiple-Output (MIMO) systems with Alamouti Space-Time Block Code (STBC) transmit scheme. A locally optimal selection criterion is proposed at first. Then, the incremental selection approach is applied, which selects one among the residual available users to maximize the minimum user SINR step by step. Simulation results show that the fast algorithm gains over 90% of the diversity benefit achieved by the exhaustive search selection, and that the fast algorithm has much lower computational burden than the exhaustive search one, for the scenario where the number of all the available users is much greater than that of the selected users.