Upward lightning flashes initiated simultane- ously from two towers separated by a distance of 3420 m were analyzed in detail based on high-speed camera images and S-band Doppler radar echo intensity. Both discharges ...Upward lightning flashes initiated simultane- ously from two towers separated by a distance of 3420 m were analyzed in detail based on high-speed camera images and S-band Doppler radar echo intensity. Both discharges lasted more than 250 ms and were self-initiated from the towers in the form of upward positive leaders with a time difference of less than 4 ms. Abundant recoil leaders oc- curred transiently in the remnant channel sections during the development of the upward lightning. The number of recoil leaders over the lower tower was greater than over the higher tower. When the concurrent upward flashes occurred, the radar echo intensity in the area of the towers was no more than 45 dBZ and the towers were separately located beneath two echo centers with low altitudes of 2-3 kin.展开更多
Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource ...Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.展开更多
Analysis of forest canopy hemisphere images is one of the most important methods for measuring forest canopy structure parameters. In this study, our main focus was on using circular image region segmentation, which i...Analysis of forest canopy hemisphere images is one of the most important methods for measuring forest canopy structure parameters. In this study, our main focus was on using circular image region segmentation, which is the basis of forest canopy hemispherical photography. The boundary of a forest canopy hemisphere image was analyzed via histogram, rectangle, and Fourier descriptors. The image boundary characteristics were defined and obtained based on the following:(1) an edge model that contains three parts, i.e., step, ramp, and roof;(2) boundary points of discontinuity;(3) an edge that has a linear distribution of scattering points. On this basis, we proposed a segmentation method for the circular region in a forest canopy hemisphere image, fitting the circular boundary and computing the center and radius by the least squares method. The method was unrelated to the parameters of the image acquisition device. Hence, this study lays a foundation for automatically adjusting the parameters of high-performance image acquisition devices used in forest canopy hemispherical photography.展开更多
基金supported by the National Basic Research Program of China (Grant No.2014CB441405)the National Natural Science Foundation of China (Grant No.41375012)
文摘Upward lightning flashes initiated simultane- ously from two towers separated by a distance of 3420 m were analyzed in detail based on high-speed camera images and S-band Doppler radar echo intensity. Both discharges lasted more than 250 ms and were self-initiated from the towers in the form of upward positive leaders with a time difference of less than 4 ms. Abundant recoil leaders oc- curred transiently in the remnant channel sections during the development of the upward lightning. The number of recoil leaders over the lower tower was greater than over the higher tower. When the concurrent upward flashes occurred, the radar echo intensity in the area of the towers was no more than 45 dBZ and the towers were separately located beneath two echo centers with low altitudes of 2-3 kin.
基金supported by National Natural Science Foundation of China (Grant No. 61501048) National High-tech R&D Program of China (863 Program) (Grant No. 2013AA102301)+1 种基金The Fundamental Research Funds for the Central Universities (Grant No. 2017RC12) China Postdoctoral Science Foundation funded project (Grant No.2016T90067, 2015M570060)
文摘Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(No.2572014BB04) the National Natural Science Foundation of China(No.31370710) the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110062110002)
文摘Analysis of forest canopy hemisphere images is one of the most important methods for measuring forest canopy structure parameters. In this study, our main focus was on using circular image region segmentation, which is the basis of forest canopy hemispherical photography. The boundary of a forest canopy hemisphere image was analyzed via histogram, rectangle, and Fourier descriptors. The image boundary characteristics were defined and obtained based on the following:(1) an edge model that contains three parts, i.e., step, ramp, and roof;(2) boundary points of discontinuity;(3) an edge that has a linear distribution of scattering points. On this basis, we proposed a segmentation method for the circular region in a forest canopy hemisphere image, fitting the circular boundary and computing the center and radius by the least squares method. The method was unrelated to the parameters of the image acquisition device. Hence, this study lays a foundation for automatically adjusting the parameters of high-performance image acquisition devices used in forest canopy hemispherical photography.