期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多项式Schur稳定性的最大摄动区间
1
作者 赵克友 徐世许 《自动化学报》 EI CSCD 北大核心 1994年第6期734-738,共5页
已知摄动多项式,其中诸系数ai(r)(i=0,1,……,n)皆为实变量r的多项式函数,又设标称多项式p(z,0)是Schur稳定的.这里给出最大振动区间(r(min),r(max))的计算方法,以使对这区间中的所有r... 已知摄动多项式,其中诸系数ai(r)(i=0,1,……,n)皆为实变量r的多项式函数,又设标称多项式p(z,0)是Schur稳定的.这里给出最大振动区间(r(min),r(max))的计算方法,以使对这区间中的所有r,多项式外p(z,r)都是Schur稳定的. 展开更多
关键词 Schur稳定性 摄动多项式 多项式 最大区间
下载PDF
Reliability analysis of structure with random parameters based on multivariate power polynomial expansion 被引量:1
2
作者 李烨君 黄斌 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期59-63,共5页
A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, struc... A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time. 展开更多
关键词 RELIABILITY random parameters multivariable power polynomial expansion perturbation technique Galerkin projection
下载PDF
The Estimation of the Number of Zeros of the Abelian Integrals for a Class of Hamiltonian Systems
3
作者 SONGYan 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2005年第2期158-162,共5页
In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the syst... In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the system inside the class of all polynomial systems of degree n. The main result is that the upper bound for the number of zeros of the Abelian integral associated to this system is 3n-1. 展开更多
关键词 Hamiltonian system Abelian integral Picard-Puchs equation general Rolle's theorem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部