This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t...This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.展开更多
In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the syst...In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the system inside the class of all polynomial systems of degree n. The main result is that the upper bound for the number of zeros of the Abelian integral associated to this system is 3n-1.展开更多
This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial mul...This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial multiplier skill, the authors show that, corresponding to the different values of the parameters involved in the nonlinear locally distributed feedback control, the energy of the beam under the proposed feedback decays exponentially or in negative power of time t as t →∞.展开更多
文摘This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
文摘In this paper, we discuss the estimation of the number of zeros of the Abelian integral for the quadratic system which has a periodic region with a parabola and a straight line as its boundary when we perturb the system inside the class of all polynomial systems of degree n. The main result is that the upper bound for the number of zeros of the Abelian integral associated to this system is 3n-1.
基金This research is supported by the National Science Foundation of China under Grant Nos. 10671166 and 60673101.
文摘This paper studies the stabilization problem of uniform Euler-Bernoulli beam with a nonlinear locally distributed feedback control. By virtue of nonlinear semigroup theory, energy-perturbed approach and polynomial multiplier skill, the authors show that, corresponding to the different values of the parameters involved in the nonlinear locally distributed feedback control, the energy of the beam under the proposed feedback decays exponentially or in negative power of time t as t →∞.