Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from silts...Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from siltstones of the Qingshankou Formation in Songliao Basin. The brittle-plastic transition was investigated based on the stress-strain relation. The results suggest that the brittleness indices calculated by static elastic parameters are negatively correlated with the stress drop coefficient and the brittleness index B2, defined as the average of the normalized Young's modulus and Poisson's ratio, is strongly correlated with the stress drop. The brittleness index B2, Young's modulus, and Poisson's ratio correlate with the brittle minerals content; that is, quartz, carbonates, and pyrite. We also investigated the correlation between pore fluid and porosity and dynamic brittle characteristic based on index B2. Pore fluid increases the plasticity of rock and reduces brittleness; moreover, with increasing porosity, rock brittleness decreases. The gas-saturated siltstone brittleness index is higher than that in oil- or water-saturated siltstone; the difference in the brittleness indices of oil- and water-saturated siltstone is very small. By comparing the rock mechanics and ultrasonic experiments, we find that the brittleness index obtained from the rock mechanics experiments is smaller than that obtained from the ultrasonic experiments; nevertheless, both decrease with increasing porosity as well as their differences. Ultrasonic waves propagate through the rock specimens without affecting them, whereas rock mechanics experiments are destructive and induce microcracking and porosity increases; consequently, the brittleness of low-porosity rocks is affected by the formation of internal microcrack systems.展开更多
本报告(1)旨在通过实例说明照搬西方音乐形态学术语或采用被其异化了的其他非西方音乐话语(如黄皮白心的中国"香蕉词"话语)在理解其自身音乐传统时可能遭遇的误读、曲解和失语的窘境,建议由国际传统音乐学会中国委员会牵头组...本报告(1)旨在通过实例说明照搬西方音乐形态学术语或采用被其异化了的其他非西方音乐话语(如黄皮白心的中国"香蕉词"话语)在理解其自身音乐传统时可能遭遇的误读、曲解和失语的窘境,建议由国际传统音乐学会中国委员会牵头组建一个"音乐形态术语学(The Terminology of Musical Morphology)研究小组",来统筹重构这一领域话语系统的研究。展开更多
The stationary probability density function (PDF) solution to nonlinear ship roll motion excited by Poisson white noise is analyzed. Subjected to such random excitation, the joint PDF solution to the roll angle and an...The stationary probability density function (PDF) solution to nonlinear ship roll motion excited by Poisson white noise is analyzed. Subjected to such random excitation, the joint PDF solution to the roll angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the exponential-polynomial closure (EPC) method is adopted. With the EPC method, the PDF solution is assumed to be an exponential-polynomial function of state variables. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. The problem of determining the unknown parameters in the approximate PDF finally results in solving simultaneous nonlinear algebraic equations. Both slight and high nonlinearities are considered in the illustrative examples. The analysis shows that when a second-order polynomial is taken, the result of the EPC method is the same as the one given by the equivalent linearization (EQL) method. The EQL results differ significantly from the simulated results in the case of high nonlinearity. When a fourth-order or sixth-order polynomial is taken, the results of the EPC method agree well with the simulated ones, especially in the tail regions of the PDF. This agreement is observed in the cases of both slight and high nonlinearities.展开更多
基金financially supported by Jiangsu Specially-Appointed Professors ProgramThe Fundamental Research Funds for the Central Universities(No.2016B13114)
文摘Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from siltstones of the Qingshankou Formation in Songliao Basin. The brittle-plastic transition was investigated based on the stress-strain relation. The results suggest that the brittleness indices calculated by static elastic parameters are negatively correlated with the stress drop coefficient and the brittleness index B2, defined as the average of the normalized Young's modulus and Poisson's ratio, is strongly correlated with the stress drop. The brittleness index B2, Young's modulus, and Poisson's ratio correlate with the brittle minerals content; that is, quartz, carbonates, and pyrite. We also investigated the correlation between pore fluid and porosity and dynamic brittle characteristic based on index B2. Pore fluid increases the plasticity of rock and reduces brittleness; moreover, with increasing porosity, rock brittleness decreases. The gas-saturated siltstone brittleness index is higher than that in oil- or water-saturated siltstone; the difference in the brittleness indices of oil- and water-saturated siltstone is very small. By comparing the rock mechanics and ultrasonic experiments, we find that the brittleness index obtained from the rock mechanics experiments is smaller than that obtained from the ultrasonic experiments; nevertheless, both decrease with increasing porosity as well as their differences. Ultrasonic waves propagate through the rock specimens without affecting them, whereas rock mechanics experiments are destructive and induce microcracking and porosity increases; consequently, the brittleness of low-porosity rocks is affected by the formation of internal microcrack systems.
文摘本报告(1)旨在通过实例说明照搬西方音乐形态学术语或采用被其异化了的其他非西方音乐话语(如黄皮白心的中国"香蕉词"话语)在理解其自身音乐传统时可能遭遇的误读、曲解和失语的窘境,建议由国际传统音乐学会中国委员会牵头组建一个"音乐形态术语学(The Terminology of Musical Morphology)研究小组",来统筹重构这一领域话语系统的研究。
基金supported by the National Natural Science Foundation of China (Grant No. 51008211)
文摘The stationary probability density function (PDF) solution to nonlinear ship roll motion excited by Poisson white noise is analyzed. Subjected to such random excitation, the joint PDF solution to the roll angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the exponential-polynomial closure (EPC) method is adopted. With the EPC method, the PDF solution is assumed to be an exponential-polynomial function of state variables. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. The problem of determining the unknown parameters in the approximate PDF finally results in solving simultaneous nonlinear algebraic equations. Both slight and high nonlinearities are considered in the illustrative examples. The analysis shows that when a second-order polynomial is taken, the result of the EPC method is the same as the one given by the equivalent linearization (EQL) method. The EQL results differ significantly from the simulated results in the case of high nonlinearity. When a fourth-order or sixth-order polynomial is taken, the results of the EPC method agree well with the simulated ones, especially in the tail regions of the PDF. This agreement is observed in the cases of both slight and high nonlinearities.