随着自然语言处理技术的发展,文本摘要技术已经被广泛应用在生活的方方面面,在司法领域,文本摘要技术能够帮助司法文本实现“降维”,对迅速了解案件详情,获取案件要素有很大的帮助,促使司法向信息化、智能化发展。但是现有的摘要生成模...随着自然语言处理技术的发展,文本摘要技术已经被广泛应用在生活的方方面面,在司法领域,文本摘要技术能够帮助司法文本实现“降维”,对迅速了解案件详情,获取案件要素有很大的帮助,促使司法向信息化、智能化发展。但是现有的摘要生成模型应用在司法文本上,生成的摘要质量不尽如人意,还存在着生成重复、冗余,与现实情况不相符等问题,特别是当行为人存在多项罪名和多项判罚时,使用常见摘要生成模型生成的摘要会出现罪罚不匹配的情况。为了解决这些问题,提出基于知识增强预训练模型的司法文本摘要生成模型LCSG-ERNIE(legal case summary generation based on enhanced language representation with informative entities),该模型在预训练语言模型中融入司法知识,并结合对比学习的思想生成摘要,提高生成摘要的质量,减少出现的罪罚不匹配情况,最终通过实验证明提出的模型取得较好效果。展开更多
文摘随着自然语言处理技术的发展,文本摘要技术已经被广泛应用在生活的方方面面,在司法领域,文本摘要技术能够帮助司法文本实现“降维”,对迅速了解案件详情,获取案件要素有很大的帮助,促使司法向信息化、智能化发展。但是现有的摘要生成模型应用在司法文本上,生成的摘要质量不尽如人意,还存在着生成重复、冗余,与现实情况不相符等问题,特别是当行为人存在多项罪名和多项判罚时,使用常见摘要生成模型生成的摘要会出现罪罚不匹配的情况。为了解决这些问题,提出基于知识增强预训练模型的司法文本摘要生成模型LCSG-ERNIE(legal case summary generation based on enhanced language representation with informative entities),该模型在预训练语言模型中融入司法知识,并结合对比学习的思想生成摘要,提高生成摘要的质量,减少出现的罪罚不匹配情况,最终通过实验证明提出的模型取得较好效果。