In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, whi...In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.展开更多
The ratio of nitrous oxide(N2O)to N2O plus nitrogen gas(N2)emitted from soils(N2O/(N2O+N2))is regarded as a key parameter for estimating fertilizer nitrogen(N)loss via N2emission at local,regional or global scales.How...The ratio of nitrous oxide(N2O)to N2O plus nitrogen gas(N2)emitted from soils(N2O/(N2O+N2))is regarded as a key parameter for estimating fertilizer nitrogen(N)loss via N2emission at local,regional or global scales.However,reliable measurement of soil N2emissions is still difficult in fertilized soil-crop systems.In this study,the N loss via N2emission following basal urea application(with a dose of 150 kg N ha-1)to a calcareous soil cultivated with winter wheat was quantified using the helium-based gas-flow-soil-core technique.Emissions of N2and N2O from sampled fresh soils were measured under simulated field soil temperature and oxygen conditions.Our observation performed on the first day after irrigation and rainfall events showed the highest N2and N2O emissions,which amounted to approximately 11.8 and 3.8μg N h-1kg-1dry soil,corresponding to 3304 and 1064μg N m-2h-1,respectively.The N2O/(N2O+N2)molar ratios within about 10 days following fertilization ranged from 0.07 to 0.25,which were much larger than those at the other time.During the one-month experimental period,the urea-N loss via emissions of N2,N2O,and N2+N2O was 1.6%,0.6%,and 2.2%,respectively.Our study confirms that the widely applied acetylene-inhibition method substantially underestimates fertilizer N losses via N2emissions from calcareous soils cultivated with winter wheat.展开更多
Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which...Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with large d spacing(0.852 nm) of graphene oxide(GO), the(002) plane distance decreases to 0.358-0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. The ID/IG ratio of RGOs is about 1.0-1.15, indicating that reconstructed sp^2 domains have smaller sizes and larger quantity. The content of sp^2 bonded C in GO(36.93%, molar fraction) increases to 45.48%-72.92%(molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.展开更多
基金Supported by the Henan Outstanding Youth Science Fund (0612002400)
文摘In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.
基金jointly supported by the National Key Research&Development Program [grant number 2017YFD0200100]the National Natural Science Foundation of China [grant numbers 41877333,41303060,and 41830751]
文摘The ratio of nitrous oxide(N2O)to N2O plus nitrogen gas(N2)emitted from soils(N2O/(N2O+N2))is regarded as a key parameter for estimating fertilizer nitrogen(N)loss via N2emission at local,regional or global scales.However,reliable measurement of soil N2emissions is still difficult in fertilized soil-crop systems.In this study,the N loss via N2emission following basal urea application(with a dose of 150 kg N ha-1)to a calcareous soil cultivated with winter wheat was quantified using the helium-based gas-flow-soil-core technique.Emissions of N2and N2O from sampled fresh soils were measured under simulated field soil temperature and oxygen conditions.Our observation performed on the first day after irrigation and rainfall events showed the highest N2and N2O emissions,which amounted to approximately 11.8 and 3.8μg N h-1kg-1dry soil,corresponding to 3304 and 1064μg N m-2h-1,respectively.The N2O/(N2O+N2)molar ratios within about 10 days following fertilization ranged from 0.07 to 0.25,which were much larger than those at the other time.During the one-month experimental period,the urea-N loss via emissions of N2,N2O,and N2+N2O was 1.6%,0.6%,and 2.2%,respectively.Our study confirms that the widely applied acetylene-inhibition method substantially underestimates fertilizer N losses via N2emissions from calcareous soils cultivated with winter wheat.
基金Project(51274248)supported by the National Natural Science Foundation of ChinaProjects(2015DFR50580,2013DFA31440)supported by the International Scientific and Technological Cooperation Program of China
文摘Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with large d spacing(0.852 nm) of graphene oxide(GO), the(002) plane distance decreases to 0.358-0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. The ID/IG ratio of RGOs is about 1.0-1.15, indicating that reconstructed sp^2 domains have smaller sizes and larger quantity. The content of sp^2 bonded C in GO(36.93%, molar fraction) increases to 45.48%-72.92%(molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.